Superconductivity & the search for a stronger "glue"

Jeff Sonier

Modern Electronics

Exploit the electronic structure of materials.

Electrons – Electronic Structure

Electrons not only have *negative charge*, they have *spin* (*Up* or *Down*)

The band structure of a solid determines how well it conducts electricity.

Mobile Electrons in a Metal – Charge Carriers

Resistance to the flow of electrical current is caused by electrons *scattering* from:

- lattice vibrations (phonons)
- defects and impurities
- electrons

Mobile Electrons in a Metal – Charge Carriers

Resistance to the flow of electrical current is caused by electrons *scattering* from:

- lattice vibrations (phonons)
- defects and impurities
- electrons

Resistance causes *losses* in the transmission of electric power and *heating* that limits the amount of electric power that can be transmitted.

Mobile Electrons in a Metal

In a 1 cm³ metal there are ~ 10^{23} mobile electrons.

These electrons interact mutually via Coulomb *repulsion*.

Puzzle:

Thermodynamic and transport properties (e.g. electrical conductivity) of metals are well described in terms of *non-interacting* electrons!

Fermi Liquid Theory (1950s)

One of the major challenges of theoretical solid state physics is to understand the effects of interactions in solids. A cornerstone of the understanding of such interactions is *Landau's theory of Fermi liquids*, which states that despite the interactions an electron gas in a metal has a behavior close to the one of a non-interacting system.

Modern Solid State Physics - Beyond Fermi Liquid Theory

In many materials, interactions are strong and can lead to drastic effects such as *superconductivity*!

What is superconductivity?

The first superconductor was **discovered in 1911** by H. Kamerlingh Onnes at the University of Leiden, 3 years after he first liquefied helium.

The Nobel Prize in Physics 1913

Properties of a Superconductor

A superconductor is a material that exhibits both **perfect conductivity** and **perfect diamagnetism**.

Zero Electrical Resistance

Onnes found that the electrical resistance of various metals (e.g. Hg, Pb, Sn) vanished below a critical temperature T_c .

Superconducting Power Cables

Bi-2223 cable -Albany New York - commissioned fall 2006 February 2008 updated with YBCO section

Superconducting Magnets

The absence of zero electrical resistance means that **persistent currents** flow in a superconducting ring. A major application of this property is **superconducting magnets**. With no energy dissipated as heat in the coil windings, these magnets are cheaper to operate and can sustain larger electric currents (and hence produce **greater magnet fields)** than electromagnets.

27 km Large Hadron Collider (LHC)

MRI machine

HELIOS

Magnetic Field

Magnetic field is produced by electric current (*i.e.* moving electric charge)

Electromagnet

Macroscopic currents in wires *e.g.* solenoid

Permanent Magnet

Microscopic currents in materials *e.g.* bar magnet

magnetic field lines

Bar Magnet

Electrons in atomic orbits are **moving charge** and hence give rise to **magnetic field**. In addition the electrons have an **intrinsic magnetic moment** that also contributes.

Simplified view of an atom

Each atom is like a tiny bar magnet.

Atom:

S

In a **bar magnet**, the microscopic magnets are preferentially aligned

Perfect Diamagnetism

In 1933, Meissner and Ochsenfeld discovered that magnetic field in a superconductor is **expelled** as it is cooled below T_c .

However, there is a limit as to how much field a superconductor can take! Superconductivity is destroyed above a **critical magnetic field** $H_c(T)$, separating the "normal" and superconducting states.

A magnetic field is expelled from a superconductor (Meissner effect)

Magnetic Response of Type-I and Type-II Superconductors

The way to superconductivity...

"Cooper pairs": pairs of electrons caused by electron-phonon interaction

BCS Theory of Superconductivity

1972

J. Bardeen L.N. Cooper J.R. Schrieffer

General idea - Electrons pair up ("Cooper pairs") and form a *coherent quantum state*, making it impossible to deflect the motion of one pair without involving all the others.

Zero resistance and the Meissner effect require that the Cooper pairs share the same phase \Rightarrow "quantum phase coherence"

The BCS state is characterized by a complex *macroscopic wave function*:

$$\Psi(\vec{r}) = |\Psi_0| e^{i\frac{\theta(\vec{r})}{\sqrt{2}}}$$
Amplitude Phase

History of Superconductivity

Discovery of High- T_c Superconductivity

Time Magazine May 11, 1987

GM advertisement April, 2009

Mobile vs. Bound Electrons

Bound electrons can give rise to localized magnetic moments:

Mobile electrons carry electrical current:

Generic Phase Diagram

Charge Carrier Concentration

Generic Phase Diagram

Charge Carrier Concentration

High-*T*_c Cuprates

Antiferromagnet Superconductor

Hole doping by cation substitution or oxygen doping

2008: Beginning of the Iron Age

Science Top 10 Breakthroughs of the Year Discovery of iron—based high- T_c superconductors Y. Kamihara *et al.*, J. Am. Chem. Soc. **130**, 3296 (2008)

Many chemical substitutions are possible.

They have **layered** structures & exhibit **antiferromagnetic order** like high- T_c cuprates.

Long-range SDW order in LaOFeAs

de la Cruz et al. Nature 453, 899 (2008)

Structural transition (from tetragonal to orthorhombic or monoclinic) at T_c ~150K and a magnetic transition at T_c ~134K Fe moment = 0.36 μ_B : VERY SMALL!

Alcoholic beverages induce superconductivity in $FeTe_{1-x}S_x$

K. Deguchi *et al.*, Supercond. Sci. Technol. **24**, 05008 (2011)

High-Temperature Superconductors

What is the microscopic "glue" that binds the electrons into pairs?

- Phonons (lattice vibrations)?
- Magnetism?
- Something else?

Generic Phase Diagram

Charge Carrier Concentration

Normal State "Smorgasborg"

N. Doiron-Leyraud & L. Taillefer, *Physica C* 481, 161 (2012)

$$\Psi(\vec{r}) = |\Psi_0| e^{i\theta(\vec{r})} \quad \text{BCS wave function describing} \\ \text{the superconducting state}$$

In the superconducting state, both the pairing amplitude $|\Psi_0|$ and the phase $\theta(\vec{r})$ are *rigid*.

The superconducting state can be destroyed by *fluctuations* of the amplitude, phase, or both.

Low-Temperature Superconductor
 Superconductivity destroyed by *amplitude* fluctuations
 i.e. destruction of Cooper pairs

 \bigcirc

High-Temperature Superconductor
 Superconductivity destroyed by *phase* fluctuations
 i.e. destruction of long-range phase coherence of Cooper pairs

Consequently the simple binding of electrons into Cooper pairs and short-range phase coherence may occur at temperatures well *above* T_c!

Transverse-Field µSR

where G(t) is a relaxation function describing the *envelope* of the TF-µSR signal.

HiTime: High transverse-field (7 T) μ SR spectrometer

Relaxation of TF- μ SR Signal in YBa₂Cu₃O_{6.57} ($T_c = 62.5$ K) at H = 7T

Vortex Lattice of a Type-II Superconductor

TF-µSR is ideally suited to measure the internal magnetic field distribution

e.g. field distribution of a square vortex lattice (from Mitrovic et al.)

 $Bi_{2+x}Sr_{2-x}Ca_2Cu_2O_{8+\delta}$ (BSCCO)

Magnetic Response Above *T*_c

Observation #1

Magnetic Response Above *T*_c

Observation #2

 $T_{\rm c}^{\rm max}$ is maximum value of $T_{\rm c}$ for each compound

What does this tell us?

 The spatially inhomogeneous magnetic response above T_c is related to superconductivity.

• There is a <u>universal</u> **competing phase** that causes the spatial inhomogeneity in the normal state (i.e. the electron fluid has a tendency toward inhomogeneity).

Generic Phase Diagram

Charge Carrier Concentration

Back to the Glue

The pairing glue may be **magnetic** in origin, but what competes with superconductivity may also be.

Its complicated!