New results from the T2K long baseline neutrino experiment

Kendall Mahn

For the T2K collaboration

The T2K Collaboration

<u>Canada</u>

TRIUMF U of Alberta U of B Columbia U of Regina U of Toronto U of Victoria York U

France

CEA Saclay IPN Lyon LLR E Poly LPNHE-Paris

<u>Poland</u>

A Soltan, Warsaw HNiewodniczanski T U Warsaw U of Silesia Warsaw U Wroclaw U

<u>Russia</u> INR^{8/8/2011}

<u>Korea</u>

Chonnam Nat'l U Dongshin U Seoul Nat'l U

<u>Italy</u> INFN Bari INFN Roma Napoli U

Padova U

Switzerland

Bern ETH Zurich U of Geneva

<u>Spain</u> IFIC, Valencia IFAE, Barcelona

<u>Germany</u> RWTH Aachen U

Japan ICRR Kamioka ICRR RCCN KEK Kobe U Kyoto U Miyagi U of Ed Osaka City U U of Tokyo

USA Boston U BNL Colorado State U Duke U Louisiana State U Stony Brook U U of California, Irvine U of Colorado U of Pittsburgh U of Rochester U of Washington

<u>UK</u>

U of Oxford Imperial C London Lancaster U Queen Mary U of L Sheffield U STFC/RAL STFC/Daresbury U of Liverpool U of Warwick 2

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

A refresher on neutrino mixing

The flavor state of the neutrino, v_{α} , is related to the mass states, v_i , by a non unity mixing matrix, $U_{\alpha i} = \sum U = \sum U$

$$|v_i\rangle = \sum U_{\alpha i} |v_{\alpha}\rangle$$

Since there are three observed flavors of neutrinos (v_e , v_μ , v_τ), U contains three mixing angles (θ_{12} , θ_{23} , θ_{13}) and a CP violating phase δ .

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

$$\mathbf{c}_{ij} = \cos\theta_{ij}, \mathbf{s}_{ij} = \sin\theta_{ij}$$

$$\mathbf{c}_{ij} = \cos\theta_{ij}, \mathbf{s}_{ij} = \sin\theta_{ij}$$

$$\mathbf{c}_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\textbf{``Atmospheric'': } \theta_{23} \sim 37^{\circ} - 53^{\circ}$$

$$\textbf{``CP sector'': } \theta_{13} < 11^{\circ}$$

$$\textbf{``Solar'': } \theta_{12} \sim 34^{\circ}$$

Quark mixing: unitary matrix, small angles: $\theta^{CKM}_{12} \sim 13.0^{\circ}$, $\theta^{CKM}_{23} \sim 2.3^{\circ}$, $\theta^{CKM}_{13} \sim 0.2^{\circ}$

- Is θ₂₃ exactly 45 degrees, or not?
- Is θ_{13} zero, or just small?
- Is there CP violation in the neutrino sector? Is it large?
- Is the mixing matrix unitary?

18/8/2011

Neutrino oscillation: v_u disappearance

Because of neutrino mixing, as the neutrinos propagate, the mass states interfere:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin\left(\frac{\Delta m_{ij}^{2}L}{2E}\right)$$

Probability to observe v_{β} after starting in flavor state v_{α} depends on:

L (km): Distance the neutrino has travelled

E (GeV): Energy of the neutrino

 Δm^2 (eV²): Difference of the square of the mass eigenvalues

 $\Delta m_{ij}^2 = m_i^2 - m_j^2 \qquad \text{``Atmospheric": } \Delta m_{23}^2 = 2.4 \times 10^{-3} \,\text{eV}^2$ ``Solar": $\Delta m_{12}^2 = 7.59 \times 10^{-5} \,\text{eV}^2$

Probability for v_{μ} oscillating into v_{x} : Start with v_{μ} beam, will observe less at a later time, called " v_{μ} disappearance"

$$P(\nu_{\mu} \rightarrow \nu_{x \neq \mu}) = \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

Existing measurements of v_{μ} disappearance

$$P(v_{\mu} \rightarrow v_{x \neq \mu}) = \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

Atmospheric neutrinos (Super-Kamiokande) Phys.Rev.D71:112005,2005; hep-ex/0501064

L~15km-13,000km, E~100 MeV-10 TeV

•
$$1.5 < \Delta m_{23}^2 < 3.4 \times 10^{-3} \text{ eV}^2$$

Neutrino oscillation: v_e appearance

Probability for ν_{μ} oscillating into ν_{e} (ν_{e} appearance in ν_{μ} beam)

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

$$\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^3 \left(\frac{\Delta m_{31}^2 I}{4E} \right)$$

$$+\alpha\sin 2\theta_{13}\cos\delta_{CP}\cos\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}\cos\left(\frac{\Delta m_{31}^2 L}{4E}\right)\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

$$\Delta m_{31}^2 \sim \Delta m_{23}^2$$

α =

Subleading terms depend on δcp differently for neutrinos (-) and antineutrinos (+)

Sakharov's conditions require CP violation and baryon number violation A.D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)]

 CP violation in heavy, right handed neutrino decays creates lepton number asymmetry which can be converted to baryon number asymmetry (leptogenesis)
 M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986)

 CP violation with light neutrinos is suggestive of CP violation of the hypothetical heavy neutrino; see saw mechanism gives light neutrino mass and heavy partner 18/8/2011

Existing measurements of v_e appearance

Accelerator-produced neutrino beam (MINOS) Phys.Rev.D82:051102,2010; hep-ex/1006.0996 L=735km, E(peak) ~3 GeV

- $2\sin^2\theta_{23}\sin^22\theta_{13} < 0.12$ (90% CL)
- v_e and v_μ interact differently in matter which alters the oscillation probability
- "matter effects" depend upon sign(\(\Delta\mu^2\)), called the mass hierarchy

 $m_3 > m_1$ implies $\Delta m_{31}^2 > 0$ (normal)

 $m_3 < m_1$ implies $\Delta m_{31}^2 < 0$ (inverted)

 MINOS is sensitive to this effect and so the limit depends on which hierarchy is assumed

Reactor $\overline{\nu}_{e}$ disappearance (CHOOZ) Eur.Phys.J.C27:331-374,2003; hep-ex/0301017 L~1 km, E~3 MeV

• $\sin^2 2\theta_{13} < 0.15$ at $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

The T2K experiment

T2K is designed to measure oscillations at the atmospheric Δm^2 :

- Measure v_{μ} disappearance ($\Delta m_{23}^2, \theta_{23}$)
- Discover v_e appearance? (θ_{13})

Produce a beam of v_{μ} on one side of Japan and detect it on the other

Neutrino beam directed across Japan

Super Kamiokande 50,000 tons of water 10,000 phototubes

Tokai accelerator complex and location of near detector (ND280)

Creating an (offaxis) neutrino beam

The protons hit a 91 cm long graphite target, producing pions and kaons The mesons are focused by three magnetic ``horns"

then decay in a 100m long decay volume

$$\pi \rightarrow \mu + \nu_{\mu}$$

The muons are sampled using a pair of muon monitors as a real-time neutrino beam monitor

Neutrino detectors

n

π

u

 $\frac{Off-axis@295km with Super-Kamiokande}{Extract oscillation parameters}$ from v_{μ} , v_{e} rates $\frac{18/8/2011}{KMahn, TRIUMF ser}$

118 m ~~280 m <u>On-axis with the INGRID detector</u> Determine neutrino beam direction

μ monitor

 $\frac{Off\text{-axis with the ND280 detectors}}{\text{Measure the unoscillated }\nu_{\mu}\text{ and }\nu_{e}\text{ rates}}$ Constrain background processes

Super-K

ND280

INGRID

Neutrino interactions at T2K

Primary interaction is Charged Current Quasi-Elastic events

- Reconstruct neutrino energy from outgoing lepton
- Need e- μ separation for ν_e, ν_μ and momentum measurement

CC π (single pion production) and NC π are backgrounds

- v_{μ} disappearance: Same as CCQE if pion is not identified
- ν_{e} appearance: NC backgrounds are flux dependant and can mimic a CC ν_{e} interaction
- Final state interactions also alter how the underlying event is observed,
- e.g. absorption or charge exchange of $\pi^{\scriptscriptstyle +}$

18/8/2011

On-axis Interactive Neutrino GRID (INGRID)

Off-axis ND280 detector complex

Suite of near detectors sit within UA1 (B=0.2T, 850 tons) magnet just above INGRID

- Current analysis use the Tracker to measure the unoscillated CC v_{μ} rate
- Future analyses will use ECals, POD and SMRD

Side Muon Range Detector

87x17x0.7cm instrumented scintillator in magnet yoke Active veto, cosmic trigger

Electromagnetic

<u>Calorimeters</u> X-Y Pb/scintillator planes POD, Barrel, TPC3 Tag photons, e from Tracker and POD

Pi-zero Detector (POD)

Pb/brass/scintillator planes with water bags (13.3 tons) Neutrino interaction target (CH+H₂O) Photons, electrons shower separable from MIPs

18/8/2011

Example neutrino interactions in ND280

T2K far detector: Super-Kamiokande

295km away is the T2K far detector, Super-Kamiokande ("Super-K")

- 50kton water Cherenkov detector (22.5kton fiducial mass)
- 39.4 m diameter, 41.4 m tall cylindrical tank
- 11,129 inner photomultiplier tubes (PMTs) (40% photocathode coverage)
- 1885 veto PMTs located on the outside of the tank reject events entering the tank
- Cosmic ray rate in Kamioka mine is 1.77Hz at 2700m water equivalent

Neutrino events in Super-K

Cherenkov light emitted at a fixed angle produces ring(s) on the tank wall, recorded by PMTs

Data event in Super-K: single muon

Muons from CC interactions produce well defined rings Angle, momentum can be reconstructed from PMT charge, time information

18/8/2011

Neutrino events in Super-K

Electrons produce ``fuzzy'' rings, due to multiple scattering and showering

- CC v_e events produce an electron
- Ability to tag electrons from μ decay from CC μ (deadtime-less DAQ)

Neutral pions produce two electron-like rings from decay photons If one ring is not reconstructed, mimics CCQE $\nu_{\rm e}\,$ signal

NC π^0 background rejection

Scan over possible second ring directions and energies for a faint second ring Select best match for observed light pattern

Cut on resulting invariant mass of two rings (m π^0) or $L_{2\gamma}/L_e$

Events with two true rings will have an invariant mass consistent with π^0

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Data collected

Run I + Run II protons on target = $(0.32 + 1.11) \times 10^{20}$ =1.43 x 10²⁰ POT (2% of T2K goal)

Neutrino beam stability

Profile center [cm]

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Neutrino flux prediction

Predict the flux from measurements of beam or external data (e.g. hadron production off the target) Neutrino cross section prediction

Predict the cross section based on measurements of neutrino interactions at Ev~1 GeV

Correct the rate at Super-K by the normalization measured at ND280 and constrain the uncertainties

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Neutrino flux prediction

u

Geant3/FLUKA based flux prediction

р

Unoscillated flux at Super-K is v_u

- Also ν_µ (~6%) and
- v_e components (~1%)

Neutrinos at peak from π⁺ decay, high energy flux from K decay ^{18/8/2011} K 118 m ~280 m Uncertainties are constrained with external measurements or in-situ monitors Largest uncertainty is π, K production from the target (NA61 experiment)

INGRIE

ս monitor

Super-K

ND280

	ND	v _e bkrd	v _e / ND
Proton beam	2.2	0.0	2.2
Pion production	5.7	6.2	2.5
Kaon production	10.0	11.1	7.6
Other hadronic interactions	9.7	9.5	1.5
Meson focusing, beam direction	2.8	2.2	0.8
Total	15.4	16.1	8.5

Total ($\nu_{\mu} \text{signal}$) 4.8% after ND rate applied

 $@\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2 \sin^2 2\theta_{23} = 1.0_{32}$

π production from p+C

NA61/SHINE experiment at CERN Designed to measure hadron production

30 GeV p beam on: thin target (2cm) in 2007-2009 run T2K replica target (91cm, 1.9λ) in 2010 run

Use TOF and dE/dx to select pions

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Neutrino interaction uncertainties

Cross section model, uncertainties set from external data at $E_v \approx 1$ GeV e.g. MiniBooNE, SciBooNE, K2K

0,	,		
	$v_{\mu}^{}$ signal	$v_{e}^{}$ bkrd	ע (n
CCQE nuclear model (@lowE)	2.5%	3.1%	
CC1π	+0.4% -0.5%	2.2%	
CC coherent π	-	3.1%	
CC other	+4.1% -3.6%	4.4%	
NC all	0.9%	-	
NC1π ⁰	-	5.3%	
NC coherent π	-	2.3%	
NC other	-	2.3%	
$\sigma(v_e)$	N/A	3.4%	
Final State Interactions (FSI)	6.7%	10.1%	
Total	+8.3% -8.1%	14.0%	

External data on π^+ interaction cross sections

- Modify π re-interaction probabilities within cross section model according to external data to determine FSI uncertainty
- Alters the energy dependence of how backgrounds are reconstructed

 v_{μ} signal @ Δm^{2}_{23} = 2.4 x 10⁻³ eV² sin²2 θ_{23} = 1.0 Mahn, TRIUMF seminar

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)
Basic CC v_{μ} selection in ND280

TPC1 TPC2 TPC3

- 1. Require no tracks in TPC1 (veto POD, sand ν interactions)
- 2. Select events which originate in FGD1 or FGD2 fiducial volume
- 3. Use the highest momentum, negative TPC2 or TPC3 track
- 4. Select μ from TPC dE/dx information

ND280 CC v_µ sample

Reconstructed momentum and angle of

the CC ν_{μ} candidates after selection

- CC v_{μ} purity: 91%
- CCQE purity: 49%

No tuning to flux or cross section applied

R(data/MC) = 1.036 ± 0.028 (stat) +^{0.044}-0.037 (detector sys) ± 0.038 (xsec model)

Rate used to normalize expected number of events at far detector

Flux uncertainties on v_e appearance analysis reduced by factor of 2 as a result

ND280 beam v_e rate cross-check

Select ν_{e} candidates at ND280 with TPC PID to check rate of intrinsic beam ν_{e}

Additional backgrounds to v_e selection, measured via control samples

 μ misidentified as e

e from photon conversion (photons emitted in v_{μ} interactions in FGD and other subdetectors)

Ratio of observed v_e / v_μ events is consistent with untuned prediction

 $N(v_e) / N(v_{\mu}) = R(e:\mu) = 1.0\% \pm 0.7\%$ (statistics) $\pm 0.3\%$ (systematics) R(e: μ , data) / R(e: μ , MC) = 0.6 ± 0.4 (statistics) ± 0.2 (systematics)

Improvements to the analysis:

- Improved rejection of backgrounds with ECals
- More data: 2.88 x 10¹⁹ POT shown here

18/8/2011

Outline

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Basic neutrino event selection at Super-K

v_{μ} and v_{e} selection at Super-K

v_{μ} selection

1. μ -like ring

2. p_µ >200MeV/c

3.0 or 1 decay electron

Signal CCQE v_{μ} Efficiency = 72% Background CCnonQE Rejection = 79%

v_e selection

1. Visible energy > 100 MeV

2. e-like ring

- 3. No decay electron
- 4. Invariant mass < 105 MeV/ c^2

5. Ev <1250 MeV

Signal v_e Efficiency = 66% Background Rejection:

- 77% for beam v_e
- 99% for NC
 18/8/2011

- 1. Select muon-like ring (CC v_{μ})
- 2. Sufficient momentum for μ PID
- 3. Reject CC1 π with decay electron cut
- CCQE: μ → e
- CC1 π : above plus $\pi \rightarrow \mu \rightarrow e$

- 1. Energy above μ , $\pi \rightarrow e$, $n \rightarrow \gamma$ threshold
- 2. Select electron-like ring (CC $\nu_{\rm e})$
- 3. Reject CC ν_{μ} with decay electron cut
- 4. Remove $NC\pi^0$ background events
- Calculate invariant mass assuming 2nd ring
- Reject invariant mass consistent with π⁰
- 5. Beam CC $\nu_{\rm e}$ have higher average energy than signal CC $\nu_{\rm e}$

Super-K selection uncertainties

Error source	v _e signal	v _e bkgd	
Ring counting	3.9%	8.3%	
Electron PID	3.8%	8.0%	
Invariant mass	5.1%	8.7%	
π^0 rejection	-	3.6%	
Fiducial volume	1.4%	1.4%	
Energy scale	0.4%	1.1%	
Decay electron eff	0.1%	0.3%	
Muon PID	-	1.0%	
Total	7.6%	15%	

Total uncertainty for v_{μ} analysis: 10.3% (predominantly ring counting)

Evaluated with atmospheric $\boldsymbol{\nu}$ control samples

Evaluated with a special control sample

- Select an atmospheric v_e candidate
- Add a simulated photon to the event to create a ``hybrid π⁰"
- Difference in π⁰ rejection efficiency between hybrid sample and pure simulated π⁰ sample is set as uncertainty

Outline

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

v_{μ} disappearance at T2K

For a fixed baseline (L=295km) oscillation probability is different for neutrinos of different energies

$$P(v_{\mu} \rightarrow v_{x \neq \mu}) = \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

Reconstruct neutrino energy from outgoing muon kinematics assuming QE interaction:

 $E_{\nu}^{QE} = \frac{2M'_{n} E_{\mu} - [M'^{2}_{n} + m^{2}_{\mu} - M^{2}_{p}]}{2[M'_{n} - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$

Extract Δm^2 , $\sin^2 2\theta_{23}$ from observed change in overall rate and spectrum Backgrounds are events where pion is unobserved (absorbed) or mistaken for muon

18/8/2011

v_u disappearance results

v_u disappearance results

Two independent, 2 flavor, oscillation fits are consistent

- Method A: Maximum likelihood fit to normalization, spectrum shape, systematic parameters constrained in fit
- Method B: χ² minimization fit over binned energy spectrum
 Both use Feldman-Cousins unified method to determine confidence intervals

Comparison to previous results

Consistent with previous measurements of v_{μ} disappearance (MINOS, Super-K)

Outline

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

v_e appearance at T2K

total:

1.49±0.34 (sys)

v_e events after cuts

Basic distributions of v_e candidates

Momentum, angle with respect to beam direction distributions are reasonable

Basic distributions of v_e candidates

Clustering of candidates at high R in beam direction KS test of R² variable is 3% (does not include beam dir)

Beam backgrounds at high radius

MC simulates neutrino interactions upstream of the detector (e.g. π^0 production)

- Only 1 v_e event cut by FV selection (no excess of v_e events outside FV)
- Dedicated sample of events entering tank (with activity in veto) agree
- No bias to radial distribution of atmospheric sample under T2K v_e selection

v_e appearance interpretation

Probability to see 6 events or more for for $sin^2 2\theta_{13}=0$ is 0.007 (2.5 σ equivalent)

Feldman-Cousins unified method For $|\Delta m_{23}^2|=2.4 \times 10^{-3} \text{ eV}^2$; $\sin^2 2\theta_{23} = 1$

Normal hierachy ($\Delta m^2 > 0$), δcp=0 best fit sin²2θ₁₃ = 0.11 0.03 < sin²2θ₁₃ < 0.28 at 90% C.L.

Inverted hierachy ($\Delta m^2 < 0$), δcp=0 best fit sin²2θ₁₃ = 0.14 0.04 < sin²2θ₁₃ < 0.34 at 90% C.L.

Phys. Rev. Lett. 107, 041801 (2011)

Excitement in the press

Neutrinos Delta force

A study of neutrinos may explain why things are made of matter, not antimatter

Comparison with new results from MINOS

http://theory.fnal.gov/jetp/talks/MINOSNue_2011June24.pdf

MINOS produced updated v_e appearance results two weeks after T2K Overlay (not combined fit) of results indicates consistency

Outline

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Pictures of JPARC, May 2011

http://www.kek.jp/intra-e/Introduction/column/ 110509map.html

Map of the damages at Tokai Campus (J-PARC)

(1) Linac

(2) 3GeV Synchrotron

(3) 50GeV Synchrotron

(4) Main Control Room

(5) Material and Life Sciences Experimental Facility

(6) 3 NBT

(7) Neutrino Experimental Facility

(8) Hadron Experimental Facility

LINAC

mutation Experimental Facility

3 GeV synchrotron power station

Road near 3 GeV RCS

Pictures of JPARC, July 2011

http://j-parc.jp/en/topics/2011/en.html Preliminary Results of Circumference Measurement by Laser Trucker

- It appeared there was a large misalignment in both horizontal and vertical directions.
- ~20 electromagnet mounts shifted more than a limit of simple adjustment.
- All electromangets will be realigned. Three teams will be done between August and October.

Near term plan for T2K

Plan is to resume experiment to make a determination of θ_{13} , nonzero or not

- Accelerator is scheduled to resume in December
- Neutrino facility (near detector and beamline) are scheduled to be ready in November
- ND280 detectors were recommissioned and are operational
- 3rd horn was moved to remote handling cell and is OK
- Enormous amount of work by collaborators, labs (KEK, JPARC) and funding agencies) to make this happen, to which we are very grateful

がんばれ、日本!

Keep it up, Japan!

Improvements to the oscillation analysis

Neutrino flux:

- NA61 results with K production
- NA61 results with replica target

Neutrino interactions:

- Add newer external data results
- e/π scattering data for FSI model

Error source	v _e bkrd	v_{μ} signal $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23} = 1.0$
v flux	±8.5	±4.8
v interactions	±14.0	+8.3 -8.1
Near detector	+5.6 -5.2	+6.2 -5.9
Far detector	±14.7	±10.3
Total	+22.8 -22.7	+15.4 -15.1

ND280 (near) detector:

- Include CC v_{μ} spectrum information
- Improved CC v_e measurement with ECal information; POD HE v_e
- CCQE, CC π^+ , NC π^0 measurements; O vs. C

Super-K (far) detector:

- Improved selection cuts, reconstruction for background separation
- Improved detector uncertainties and calibration techniques

Outline

- 1. Introduction to neutrino oscillations
- 2. Overview of the T2K experiment
- 3. Data collected by T2K
- 4. Oscillation analysis strategy
 - 1. Neutrino flux
 - 2. Neutrino interactions
 - 3. Near detector measurements
 - 4. Far detector selection and systematics
- 5. v_{μ} disappearance results
- 6. v_e appearance results
- 7. Future of the T2K experiment
- 8. Future determination of θ_{13} (and CP violation?)

Other ways to measure θ_{13}

Measure θ_{13} with \overline{v}_e disappearance from intense MW reactor sources

$$P(v_e \rightarrow v_{x \neq e}) \approx \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

Use multiple detectors at different positions from reactor for a <1% measurement

Double Chooz is taking data with far detector since Dec 2010, near in 2012 Daya Bay detectors starts data taking this summer with near detector, all in 2012 Eventual sensitivity: $\sin^2 2\theta_{13} \sim 0.03 - 0.01$

18/8/2011

Future measurements of δ_{CP}

Long baseline experiments (T2K second phase, LBNE) can extract δ_{CP} by comparing v_e appearance to $\overline{v_e}$ appearance:

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \simeq \frac{\Delta m_{12}^{2}L}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

T2K creates a predominantly antineutrino beam by switching polarity of magnetic focusing horns to focus π^- instead of π^+

Can combine results from a reactor with T2K (v mode) to constrain values of δ_{CP} as long baseline experiments depend on δ_{CP} and θ_{13} ; reactors measure only θ_{13} Int. J.Mod. Phys. A 21, 3825 (2006), hep-ex/0409028

Future long baseline experiments require very intense sources of neutrinos and or very large far detectors to make a determination of δ_{CP} at >3 σ

Summary

The T2K experiment is designed to make precision measurements of:

- v_{μ} disappearance (Δm_{23}^2 , θ_{23})
- v_e appearance (θ_{13})

With dataset prior to the earthquake:

- Preliminary v_μ disappearance results are inconsistent with no-oscillation at 4.5σ and consistent with previous experiments (MINOS, Super-K,K2K)
- 6 candidate v_e events were observed, expected background is 1.49 ± 0.34

T2K will resume running to establish if θ_{13} is nonzero or not, conclusively

- Neutrino facility (beam, near detectors) ready to operate by November
- Accelerator is scheduled to resume in December 2011

T2K leads an exciting worldwide program in precision neutrino physics:

- Is θ_{23} maximal?
- Is θ_{13} nonzero?
- Is there CP violation in the neutrino sector?

Backup slides

ND280 performance

I ow rate of broken channels	Detector	Channels	Bad ch.	Bad fraction
	ECAL (DSECAL)	22,336 (3,400)	35 (11)	0.16% (0.32%)
Events / POT stable	SMRD	4,016	7	0.17%
	P0D	10,400	7	0.07%
Timing consistent with	FGD	8,448	20	0.24 %
beam (FGD)	INGRID	10,796	18	0.17 %
	TPC	124,416	160	0.13 %
events/(1e17 POT): (5.289 +/- 0.014) 1400 1200 1000 800 600 400 200 0 5 10 10 10 10 10 10 10 10 10 10	Clusters / 10 ns	1000 800 600 200 3000 3500 4	000 4500	5000 5500 6000
Integrated	101	3000 3300 4	000 4000	Signal timine

v_{μ} selection (all cuts)

		MC w/ 2-flavor oscillation					MC
	Data	Total	v_{μ} CCQE	$ u_{\mu}CC $ non-QE	v_{e} CC	NC	w/o osc.
Interaction in FV	-	141	24.0	43.7	3.2	71.0	243
FCFV	88	74.1	19.0	33.8	3.0	18.3	166
Single-ring	41	38.7	17.9	13.1	1.9	5.7	120
μ-like	33	32.0	17.6	12.4	< 0.1	1.9	112
$P_{\mu} > 200 \text{ MeV/c}$	33	31.8	17.5	12.4	< 0.1	1.9	111
$N(decay-e) \le 1$	31	28.4	17.3	9.2	< 0.1	1.8	104
Efficiency	-	20 %	72 %	21 %	0.4 %	3 %	43 %

v_µ selection

v_e selection (all cuts)

	Data	BG expectation				$v_{\mu} \rightarrow v_{e}$
	Data	Total	v_{μ} CC	ν_{e} CC	NC	expect.
Interaction in FV	-	141.3	67.2	3.1	71.0	6.2
FCFV	88	73.6	52.4	2.9	18.3	6.0
Single-ring	41	38.3	30.8	1.8	5.7	5.2
e-like	8	6.6	1.0	1.8	3.7	5.2
E _{vis} > 100 MeV	7	5.7	0.7	1.8	3.2	5.1
No decay-e	6	4.4	0.1	1.5	2.8	4.6
$M_{inv} < 105 \text{ MeV/c}^2$	6	1.9	0.04	1.1	0.8	4.2
$E_v^{rec} < 1250 \text{ MeV}$	6	1.3	0.03	0.7	0.6	4.1
Efficiency		1 %	< 0.1 %	23 %	1 %	66 %
Efficiency	-	1%	< 0.1 %	23 %	1%	66 %

v_e appearance results

6 candidate events are observed

PDF for expected number of Super-K v_e events, including statistical and systematic errors
Future v_e appearance sensitivity

90% CL θ_{13} Sensitivity

Pink line is final POT goal of T2K

Implications of large θ_{13} on future programme

Slide from Sam Zeller's talk (informal discussion at FNAL about T2K results) https://indico.fnal.gov/conferenceDisplay.py?confId=4546

(ignoring matter effects & backgrounds for now)

S. Zeller, FNAL, 06/17/11

 $P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ $P(v_{\mu} \rightarrow v_{e}) + P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ is proportional to $\sim 1/\sin\theta_{13}$

the asymmetry gets smaller as θ_{13} increases

~75% for $\sin^2 2\theta_{13} = 0.01$ δ_{CP}=π/2 ~25% for sin²2 θ_{13} =0.10

factor ~3 reduction in CP asymmetry (independent of baseline)

 signal rate increases w/ θ₁₃ factor ~10 increase from 0.01 to 0.1 so x3 improvement in stat sig of signal

Calculation of expectation at SK

$$N_{SK}^{\exp} = \frac{R_{ND}^{\mu, Data}}{ND} \times N_{SK}^{MC} / R_{ND}^{\mu, MC}$$
Ignoring sums over neutrino flavors, interaction modes
$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{SK}(E_{\nu}) \cdot P_{osc}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \sigma(E_{\nu}) dE_{\nu}}$$

Flux uncertainty → expect cancellation in ratio

Neutrino interaction cross section uncertainties

SK reconstruction, selection uncertainties

ND280 reconstruction, selection uncertainties

Slide from Mark Hartz's FNAL seminar

Neutrino flux prediction

Proton beam monitoring

Multiple beam monitors measure the proton beam on the way to the neutrino target

Optical Transition Radiation is produced by the the protons as they pass through a thin Ti foil in in front of the neutrino target.

The light is emitted perpendicular to the beam direction, and is recorded with a 40mm camera OTR light is used to determine the beam profile and position on the target

77

K Mahn,

SK Systematic Error Envelopes

Error envelopes show the fractional error in each neutrino energy bin, but do not show correlations between bins. Error types described on slide 16.

SK Systematic Error Envelopes

Error envelopes show the fractional error in each neutrino energy bin, but do not show correlations between bins. Error types described on slide 16.

Neutrino interaction uncertainties

	$v_{\mu}^{}$ signal	v _e bkrd	(0
CCQE shape	2.5%	3.1%	ע (m l
CC1π	+0.4% -0.5%	2.2%	
CC coherent π	-	3.1%	
CC other	+4.1 -3.6%	4.4%	
NC all	0.9%	-	
NC1π ⁰	-	5.3%	
NC coherent π	-	2.3%	
NC other	-	2.3%	
σ(v _e)	N/A	3.4%	I
FSI	6.7%	10.1%	
Total	+8.3 -8.1%	14.0%	I

External data on π^+ interaction cross sections

- FSI: Modify π re-interaction probabilities within cross section model according to external data to determine FSI uncertainty
- Alters the energy dependence of how backgrounds are reconstructed

 v_{μ} signal assumes: $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2 \sin^2 2\theta_{23} = 1.0$ 18/8/2011

Efficiency of CC v_{μ} events

Efficiency of CC v_e events

Overall efficiency for CC v_e : 21.5 ±0.6% (<2 GeV, within FGD FV) Eff diff between v_e and v_{μ} is due to:

- More stringent PID cuts (large mu misID reduction required)
- Large background at low energy from decay e and photons

TPC dE/dx particle ID

Energy loss of the particle (dE/dx) can be used to separate particle type

dE/dx resolution for MIPs is 8%

Probability for a muon between 0.2 and 1.0 GeV to be identified using dE/dx as an electron is less than 0.2%

Earthquake in Japan

On March 11th, 2011, Japan experienced a severe earthquake followed by a tsunami

- Magnitude 9 earthquake on Richter scale
- Magnitude 6+ at JPARC
- The tsunami did not reach JPARC
- Accelerator was not operating (maintenance day)

Areas affected by the quake

No reported injuries to members of the T2K collaboration

or to JPARC employees

K Mahn, TRIUMF seminar

A reminder about neutrinos

In the Standard Model, there are three neutrinos: v_e , v_μ , v_τ paired with an associated charged lepton partner: e, μ , τ

Neutrinos interact via the weak force (W, Z bosons)

To detect neutrinos: Need "nothing" coming in

Detect the outgoing lepton to determine neutrino flavor (CC only)

Nucleus can be excited or additional particles emitted (NC or CC)

