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Proposed Topics:

e Basics of Paul- and Penning-traps
(equ. of motion, trap geometries,
influence of trap imperfections,)
e Ion detection and cooling
(Buffer gas cooling, resistive cooling,
Laser Doppler- and sideband-cooling,
sympathetic cooling, ion crystallization)
e Zeeman spectroscopy (g factor determinations)
 Hyperfine spectroscopy
e Atomic clocks
 Mass spectrometry in Paul- and Penning-traps
* Quantum computing with trapped ions
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Why particle trapping?

Hans Dehmelt:

A single particle at rest floating

forever in free space would be the
Ideal object*

Approximation:

A single particle at very low
momentum confined for long
times by well known forces in a
small volume In space would be a
desirable object



Key words for trap spectroscopy

e Sensitivity
e Precision
e Control



Pioneers of 1on trapping

Wolfgang Paul Hans Dehmelt

Nobelprize 1989




Basics of lon Traps




Trapping of charged particles
by electromagnetic fields

Required: 3-dimensional force towards center
F=-egrad U

Convenience: harmonic force F ocx,y,z

— U = ax? +by? + c¢z?

Laplace equ.: A(eU) =0

— a,b,c can not be all positive

Convenience: rotational symmetry

L US Uy

Quadrupole potential

Equipotentials: Hyperboloids of revolution






Problem:

No 3-dimensional potential
minimum because of different
sign of the coefficients in the
quadrupole potential

Solutions:

« Application of r.f. voltage:
dynamical trapping

Paul trap

e d.c. voltage + magnetic field In
Z-direction:

Penning trap



The ideal Paul trap

Paul Trap

U+VcosQt

Time-averaged potential minimum




Equation of motion
for a single particle

Potential: U=(U,+V cosQt)(r>-2z%)/r*

Using:

We obtain the normalized Mathieu differential

equation

The solutions are well known and depend on the
size of the parameters a and Q:

When U remains finite in time:stable solutions
When U goes to infinity: unstable solutions




Stable solutions of the
Mathieu equation




First stability area




solution of the equation of motion:

g =p(a,q)
C2n — f(a’q)

Approximate solution for a,q<<I:

F=a+q2

This is a harmonic oscillation
at frequency €2 (micromotion)
modulated by an oscillation

at frequency @(macromotion)



Ion trajectories at different operating conditions
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Trajectory of a single microscopic particle
(Wuerker 1959)




Time averaged potential depth:

D, = %erozﬂiz

Numerical example:
m=350

QQ/2n=1 MHz

r,=1 cm

3=0.3

D=25eV
Maximum ion density, when space charge potential
equals trapping potential depth

~J 6 '3
n_ . ~10°cm

Mean Kinetic ion energy (no cooling) = 1/10 D



Density distribution of an ion cloud
in a Paul trap

Experimentally measured distribution
for uncooled ion cloud

il i
——
= 0
2
i-.
EF
= 1l
.=
g j|:
- HI
G
a
ES
= 10
= \
T _ ’ e
-1a == i e 1 Lk = 0 =i =16 (1]

x-dirccaon s-hreelion
T.aser positaion

Calculated density distribution
for different temperatures
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The ideal Penning trap

Axial harmonic
potential

Radial confinement ||
by magnetic field '




Equations of motion

Electric quadrupole field and homogeneous magnetic field
in axial direction

Force acting on charged particle in 3D:

F = —-eV ® + e(VxB)
U , 1 :
O = —(2z" - x" = y7)
d ‘ |
R
Equations of motion:/d Y o d_J_lm =0 ) )
e “dt 2 P .
: .
d ) é_lﬂ) ?] = (2) (Qc :EB
dr‘ “dt 2 L ]
dz . (3)
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Solutions:

3 harmonic oscillations

= —1/2
4eU,
a, = axial
| md®
1
W, = E (o, + @) perturbed cyclotron
1
w_ = E (a)c — wl) magnetron

_\/22 2
W, = O, — 0,



lon Motion In a Penning Trap
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Modifizierte Zyklotron-  Aviale Bewegung (v
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\ important relations

0, =0, +O_

2

2 2 2
W, =0, T, T

L@

L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).

Stability limit:

2 2
W >2w

JA

e |32>8U

M d?



Quantum mechanical energy levels
of a particle in the Penning trap:

E=(n,+1/2hw, —(n_+1/2)hw +(n, +1/2)hw,

Negative sign for magnetronenergy
indicates metastability of motion




Rotating wall compression
of ion clouds
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Comparison of Paul- and Penning traps

Paul traps

« Simple set up
(no big magnet required)
* Three dimensional
potential well
e Simultaneous trapping
of both signs of charge
 Limited range for
different charge states
* Rf heating
* All frequencies subject
to space charge shift

Penning traps

* No rf heating effects
* High mass resolution
 Better stability for
higher charge states
e cyclotron frequency
Insensitive to space
charge
* EXpensive
(big magnet required)
 Trapping for only one
sign of charge
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Real Traps

Deviations from ideal harmonic potential caused by:

Truncation of trap electrode

Imperfect electrode shape

Misalighements

Space charge from simultaneously trapped ions



Dealing with imperfections:

Expansion of the trapping potential in spherical harmonics:

D(r,9) = (I)Oi cn[dLjnPn(cos 9)

Coordinate dependence of some higher order contributions:

2 —-r°+2z2°

=3:-3r°z+2z°r
=4:3r*-24r*z°+8z"°
=6:-5r°+90r*z°-120 r°z* +16 z°

> S5 S S

n=2: quadrupole, n=3: hexapole, n=4. octupole, n=6: dodekapole



Effects of trap imperfections:

Coupling of oscillation modes

Shift of eigenfrequencies

Asymmetry of resonances

Collective and noncollective oscillations

Instabilities of ion trajectories




Coupling of ion oscillation modes of a stored ion cloud in a Paul Trap
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Motional spectrum of ions in a Paul trap
measured by laser induced fluorescence
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Minimizing trap imperfections

Additional electrodes between ring and endcap
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Cyclotron resonance at different values of the correction voltage



Asymmetry of axial resonance
(taken at different excitation amplitudes)
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Individual and center-of-mass oscillation
of axial motion
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Threshold behaviour
of center-of mass resonance
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Dependence of thresghold amplitude
on ion humber
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Bistability in the excitation
of motional resonances

N, (arb. units)
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Instabilities of the ion motion in a Paul trap occur
when the ion oscillation fregencies w, w, are linear dependend
on the traps driving frequency Q

nw+nw, =k Q

n, n, k integer
n.+n,=N
2N = order of perturbation
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Instabilities of ion motion in a Paul trap




Number of electrons (a.u.)

Observed Instabilities on electrons in a Penning trap
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Instabilities of electrons stored in a Penning trap for
different storage times
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