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Electromagnetic (EM) Reactions

1

“With the electro-magnetic probe, we can 

immediately relate the cross section to the 

transition matrix element of the current operator, 

thus to the structure of the target itself ”

Small coupling constant 𝛼 ≪ 1 Perturbative treatment

Photo-absorption reactions

Coulomb excitation reactions

[De Forest-Walecka, Ann. Phys. 1966]



EM Reactions: Photo-absorption

Interaction of a (real, low-energy) 

photon with a nucleus.

2

Giant Dipole Resonance (GDR)

• Observed across all the 

periodic table

• The peak is localized 

between 10-30MeV,   

the position changes 

with the mass number



EM Reactions: Coulomb excitation

Inelastic scattering between two 

charged particles (exchange of a 

virtual photon).

3

Pigmy Dipole Resonance (PDR)

• Unstable nuclei can be 

used as projectiles

• Neutron-rich nuclei 

show fragmented low-

lying strength            

(soft modes)

A. Leistenschneider et 

al., Phys. Rev. Lett. 86, 

5442 (2001)
16𝑂



From the Resonances to the Polarizability

4

𝛼𝐸 = 2𝛼∫ 𝑑𝜔
𝑅(𝜔)

𝜔

𝐸 𝐷 = 𝛼𝐸𝐸

Interesting facts:

- Correlated to the neutron skin-radius

- Can be used to constraint the some of

the parameters appearing in the EOS

of neutron stars

- No ab-initio description for medium-

mass nuclei (until now!)

It is obtained from the dipole strength 𝑅 𝜔 as an inverse weighted 

sum-rule (via photo-absorption, Compton scattering, 𝑝, 𝑝′ reactions, 

Coulomb excitation, elastic scattering below Coulomb barrier, ...)

Extremely interesting in neutron-rich nuclei: the soft modes at 

low energy enhance the electric dipole polarizability



Theoretical Approach

No ab-initio description of the GDR for 𝐴 > 7
→ need of a new approach for larger nuclei

• Non-ab-initio: via macroscopic models or mean field based methods

• Ab-initio: described via exact computations for light nuclei using the LIT+EIHH 

method (up to 𝐴 = 7) 

Current situation on the theoretical description:

What ingredients and tools do we need?

• Continuum problem → LIT

• Many-body technique → CC

• Nuclear interactions → ChPT

5



LIT Method

The response function 𝑅(𝜔) is the key quantity 

𝜎𝛾(𝜔) = 4𝜋2𝛼𝜔𝑅 𝜔

𝛼𝐸 = 2𝛼∫ 𝑑𝜔
𝑅(𝜔)

𝜔

• Final states problem is tackled with the Lorentz Integral Transform (LIT) method

𝐿 𝜔0, Γ =
Γ

𝜋
∫ 𝑑𝜔

𝑅(𝜔)

𝜔0 − 𝜔 2 + Γ2

𝐿 𝜎 =
Γ

𝜋
𝑖|𝜃+ 𝐻 − 𝐸𝑖 + 𝜎∗ −1 𝐻 − 𝐸𝑖 + 𝜎 −1𝜃|𝑖 =  𝜓  𝜓 < ∞

where 𝐻 − 𝐸𝑖 + 𝜎  𝜓 = 𝜃|𝑖〉 and 𝜎 = −𝜔0 − 𝑖Γ

𝐿(𝜎)
𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝑅(𝜔)
• The exact final state interaction is 

included in the continuum rigorously! 6



CC Theory

• Continuum problem → Bound state problem

𝐿 𝜎 =
Γ

𝜋
𝑖|𝜃+ 𝐻 − 𝐸𝑖 + 𝜎∗ −1 𝐻 − 𝐸𝑖 + 𝜎 −1𝜃|𝑖

• Computation of the ground state → Coupled Cluster (CC) theory

𝑖 = 𝑒𝑇|0〉 T =  

𝑖=1

𝐴

𝑇𝑖
𝑇𝑛 =

1

𝑛! 2  
𝑎1,𝑎2,…,𝑎𝑛
𝑖1,𝑖2,…,𝑖𝑛

𝑡𝑖1𝑖2…𝑖𝑛

𝑎1𝑎2…,𝑎𝑛{𝑎1
+𝑖1𝑎2

+𝑖2 …𝑎𝑛
+𝑖𝑛}

7

} 𝑁𝑀𝐴𝑋 = 𝑚𝑜𝑑𝑒𝑙 𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒

} 0



CC Theory

• The energy is calculated via

𝐸𝑖 = 〈0  𝐻 0〉  𝐻 = 𝑒−𝑇 𝐻𝑁𝑒𝑇

• One needs the 𝑇 amplitudes which are found solving a set of non-linear

coupled equations

Ground state energy
Symilarity transformed

Hamiltonian

8

• Presently calculate 

only closed shell 

and closed sub-shell 

nuclei

• The aim is to extend 

to heavy nuclei (and 

open shell?)

CC theory now

CC future aim



The LIT+CC method and 𝝌𝐏𝐓

• 2NF up to N3LO

• CCSD approximation 𝑇 = 𝑇1 + 𝑇2

9

R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011)



4He: benchmarking the LIT+CC

10

Calculation of the LIT

C
C

E
IH

H

- Calculation of the LIT 

curves for different model 

space sizes

- Convergence is approached 

increasing the model space



4He: benchmarking the LIT+CC

10

Calculation of the LIT

- Calculation of the LIT 

curves for different model 

space sizes

- Convergence is approached 

increasing the model space

C
C

E
IH

H



LIT Method

The inversion metod 

• Expand the response function on a set of known functions 𝜙(𝜔, 𝛼)

𝐿 𝜔0, Γ =
Γ

𝜋
 

𝑖=1

𝜈

𝑐𝑖  𝑑𝜔
𝜙𝑖(𝜔, 𝛼)

𝜔0 − 𝜔 2 + Γ2 =  

𝑖=1

𝜈

𝑐𝑖𝐿𝑖(𝜎, 𝛼)

𝑅 𝜔 =  

𝑖=1

𝜈

𝑐𝑖𝜙𝑖(𝜔, 𝛼)

11

𝐿(𝜎)
𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝑅(𝜔)

• Apply the definition of LIT

• Evaluation of the coefficients minimizing the quantity

 

𝑗=1

𝜇

𝐿 𝜎𝑗 −  

𝑖=1

𝜈

𝑐𝑖𝐿𝑖 𝜎𝑗 , 𝛼

2



4He: benchmarking the LIT+CC

12

Response function, comparison EIHH and CC
𝑅

𝜔
[

 
𝑚

𝑏
𝑀

𝑒𝑉
]



4He: benchmarking the LIT+CC

13

2NF (CCSD) vs 3NF (EIHH)
𝑅

𝜔
[

 
𝑚

𝑏
𝑀

𝑒𝑉
]



4He: benchmarking the LIT+CC

13

Correcting for the trivial 3NF effects on the 

break-up threshold energy 
𝑅

𝜔
[

 
𝑚

𝑏
𝑀

𝑒𝑉
]



The Oxygen Isotopes - 𝟏𝟔𝑶

14

LIT convergence check



The Oxygen Isotopes - 𝟏𝟔𝑶

14

Comparison: calculated 

LIT vs LIT of the exp. data
LIT convergence check



The Oxygen Isotopes - 𝟏𝟔𝑶

Comparison: calculated 

LIT vs LIT of the exp. data
LIT convergence check

14

Stability check of

the inversion

𝑅
𝜔

[
 

𝑚
𝑏

𝑀
𝑒𝑉

]



The Oxygen Isotopes - 𝟏𝟔𝑶

15

Phys. Rev. Lett. 111, 122502 (2013)



The Oxygen Isotopes - 𝟏𝟔𝑶

15

The position of the 

peak is reproduced

Right tail-behaviour

Phys. Rev. Lett. 111, 122502 (2013)



The Oxygen Isotopes - 𝟐𝟐𝑶

16

LIT comparison
16𝑂 vs 22𝑂

 Different strength
Bremsstrahlung 

sumrule:

Strength ∝
𝑵𝒁

𝑨

𝟐
𝑹𝑷𝑵

(reproduces the ratio 

with an error of 10%)

 Peak shift
the shift suggests more 

strength in the low-

energy region for 22𝑂

Phys. Rev. C 90, 064619 

(December, 24th 2014)

𝑅𝑃𝑅𝑁

𝑅𝑃𝑁



The Oxygen Isotopes - 𝟐𝟐𝑶
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Phys. Rev. C 90, 064619 (2014)



The Oxygen Isotopes - 𝟐𝟐𝑶

17

A soft dipole mode (PDR) emerges 

from a first principle calculation

Phys. Rev. C 90, 064619 (2014)



𝟒𝟎𝑪𝒂 - The Response Function 

18

The presence of a GDR is predicted 

theoretically from first principles!

Phys. Rev. C 90, 064619 (2014)



𝟒𝟎𝑪𝒂 - The Response Function 

18

The presence of a GDR is predicted 

theoretically from first principles!

The polarizability can be 

obtained integrating the 

cross-section:

𝜶𝑬 =
𝟏

𝟐𝝅𝟐
 
𝝎𝒕𝒉

∞ 𝝈𝜸(𝝎)

𝝎𝟐
𝒅𝝎

Phys. Rev. C 90, 064619 (2014)



𝟒𝟎𝑪𝒂 - The Electric Dipole Polarizability

19

4𝐻𝑒 benchmark with LIT+EIHH

• Good agreement in 4𝐻𝑒!

40𝐶𝑎 polarizability from LIT+CC

• Largely underestimated 

in 40𝐶𝑎! 

𝛼𝐸 = 1.47𝑓𝑚3

𝛼𝐸
𝑒𝑥𝑝

= 2.23 3 𝑓𝑚3

M. Miorelli et al., in preparation (2015)



𝛼
𝐸
[𝑓

𝑚
3
]

Polarizability of 𝟏𝟔𝑶 and 𝟒𝟖𝑪𝒂

20

Ahrens et al.

M. Miorelli et al., in preparation (2015)



𝛼
𝐸
[𝑓

𝑚
3
]

𝛼
𝐸
[𝑓

𝑚
3
]

20

No experimental data for the polarizability of 48𝐶𝑎! (Ongoing 

experiment at RCNP(Japan) with (𝒑, 𝒑′) reactions)

Ahrens et al.

M. Miorelli et al., in preparation (2015)

Polarizability of 𝟏𝟔𝑶 and 𝟒𝟖𝑪𝒂



𝛼
𝐸
[𝑓

𝑚
3
]

𝛼
𝐸
[𝑓

𝑚
3
]

20

No experimental data for the polarizability of 48𝐶𝑎! (Ongoing 

experiment at RCNP(Japan) with (𝒑, 𝒑′) reactions)

Ahrens et al.

The current chiral Hamiltonians fitted on light nuclei predict too-

compact medium-mass nuclei!

As a consequence we have higher dipole excitation energies, smaller 

radii and polarizabilities!
M. Miorelli et al., in preparation (2015)

Polarizability of 𝟏𝟔𝑶 and 𝟒𝟖𝑪𝒂



Outlook – PDR in other neutron-rich nuclei

21

Soft dipole 

mode from first 

principles!

𝑅
𝜔

[
 

𝑚
𝑏

𝑀
𝑒𝑉

]

Very neutron-rich and 

unstable nuclei:

- 22𝑂: 𝑁
𝑍
= 1.75

- 22𝐶: 𝑁
𝑍

= 2.67

Can these observables be measured here at TRIUMF?



• 𝜶𝑬 is correlated to 𝒓𝒔𝒌𝒊𝒏

Energy Density Functional Theory

Phys. Rev. C 85, 041302 (2012)

22

Outlook – Correlations in neutron-rich nuclei



• 𝜶𝑬 is correlated to 𝒓𝒔𝒌𝒊𝒏

• Future insight from RCNP and JLAB(CREX) 

experiments on 48Ca

Energy Density Functional Theory Towards an ab-initio theory for 48Ca
Phys. Rev. C 85, 041302 (2012)

22

𝜶
𝑬
[𝒇

𝒎
𝟑
]

𝒓𝒔𝒌𝒊𝒏[𝒇𝒎]

Outlook – Correlations in neutron-rich nuclei



Energy Density Functional Theory

Phys. Rev. C 85, 041302 (2012)

22

Towards an ab-initio theory for 48Ca

+3NF𝜶
𝑬
[𝒇

𝒎
𝟑
]

𝒓𝒔𝒌𝒊𝒏[𝒇𝒎]

PRELIMINARY

Outlook – Correlations in neutron-rich nuclei

• 𝜶𝑬 is correlated to 𝒓𝒔𝒌𝒊𝒏

• Future insight from RCNP and JLAB(CREX) 

experiments on 48Ca



Summary and Outlook

SUMMARY

• We extended the LIT method to heavier nuclei using the CC theory

• The dipole response functions of 16,22O and 40Ca have been computed with a first 

principles based method for the first time

• We observe a soft dipole mode in 22O which describes quite well the GSI data

• The N3LO NN interaction overbinds medium-mass nuclei which in turn exhibit too-

small charge radii and polarizabilities

OUTLOOK

• The method can be extended to other neutron-rich nuclei such as 22C and 48Ca 

• With different interactions we can investigate the correlation between different 

observables (i.e. polarizability and radii)

• Future improvement of the calculations -> include 3-body correlations:

• add 3NF 

• add triple excitations for the coupled cluster 𝑇 operator

23
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LIT Method + CC Theory

• We use the exponential ansatz of CC theory with the response

function from LIT method:

𝜃 →  𝜃 = 𝑒− 𝑇 𝜃𝑁𝑒  𝑇

𝐻 →  𝐻 = 𝑒− 𝑇 𝐻𝑁𝑒  𝑇

𝐿 𝜎 = −
𝑖

2Γ
0𝐿|  𝜃+|  𝜓𝑅 𝜎 − 0𝐿

 𝜃+|  𝜓𝑅 𝜎∗ 〉

 𝐻 − Δ𝐸0 + 𝜎  𝜓𝑅 𝜎 =  𝜃|0𝑅〉

𝐿 𝜎 = −
𝑖

2Γ
𝑖 𝜃+  𝜓 𝜎 − 𝑖 𝜃+|  𝜓 𝜎∗ 〉

𝐻 − 𝐸0 + 𝜎  𝜓 𝜎 = 𝜃|𝑖〉

LIT

LIT + CC

13



LIT Method + CC Theory

𝐿 𝜎 = −
𝑖

2Γ
0𝐿|  𝜃+|  𝜓𝑅 𝜎 − 0𝐿

 𝜃+|  𝜓𝑅 𝜎∗ 〉

Coupled Cluster Equation of Motion (CC-EOM) method

 𝜓𝑅 𝜎 = 𝑅 𝜎 |0𝑅〉

𝑅 𝜎 = 𝑟0 𝜎 +  

𝑎,𝑖

𝑟𝑖
𝑎 𝜎 {𝑐𝑎

+𝑐𝑖} +
1

4
 

𝑎𝑏,𝑖𝑗

𝑟𝑖𝑗
𝑎𝑏(𝜎) 𝑐𝑎

+𝑐𝑖𝑐𝑏
+𝑐𝑗 + ⋯

𝐿 𝜎 = −
𝑖

2Γ
〈0𝐿

 𝜃+ 𝑅 𝜎 − 𝑅 𝜎∗ 0𝑅〉

14

𝑅 𝜎  𝐻𝑅 𝜎 − 𝑅 𝜎  𝐻 0𝑅 = −𝜎𝑅 𝜎 0𝑅 +  𝜃|0𝑅〉



Lanczos method

15



Lanczos method

• Use Lanczos do diagonalize (avoid full direct diagonalization)

• The Electric Dipole Polarizability is obtained in a similar way directly 

from the Lanczos coefficients of the Lanczos tridiagonal matrix


