Greening your life with a little physics (and chemistry)

Chris Waltham UBC Physics & Astronomy SFU Surrey 2012.10.13

A Confession...

My attachment to fossil fuels runs deep. Born and raised on the South Yorkshire Coalfield, a few of my close relatives were coal miners. As an experimental physicist, I worked for 35 years in multinational collaborations whose lifeblood is jet fuel. Since realizing rather late (2003) that we, humanity, have a big carbon problem, I have been trying to wrest some kind of control over my super-sized ecological footprint. In the year 2007 I avoided flying altogether by travelling to conferences and vacation on Amtrak, which may not have been a brilliant idea, environmentally speaking...

In a world drowning in Greenwash and Sustainababble, how can I make things better without simply being duped into useless feel-good exercises?

For example:

Airlines:

"Save your earphones for your next flight and help protect the environment"

International Conferences:

"We respect the environment, so we have not mailed you a paper copy of the program"

Let's use some very basic physics and chemistry to cut to the chase:

"Bailing out the Titanic with a teaspoon" – David MacKay

References

c21.phas.ubc.ca

withouthotair.com

HOME ARTICLES VIDEOS	TAKE-HOME EXPERIMENTS LECTURE	NOTES MULTIPLE CHOICE QUESTIONS HOMEWORK PROBLEM SETS CONT	"THIS BOOK IS A Tour de force	
Home			AS A WORK OF	
Energy & Environment			POPULAR SCIENCE IT IS EXEMPLARY"	
	Title	Summary	THE ECONOMIST	
NEWS AND FAVORITE ARTICLES > Low-E Glass > Steam Burns > Nuclear Energy Basics > Heat Balance in the Human Body	Low-E Glass	Keywords: emissivity, thermal radiation How do you tell the difference between low-E and regular glass? With a cheap IR thermometer, low-E glass can be easily distinguished from the normal variety. Read More	"THIS IS TO ENERGY AND CLIMATE WHAT FREAKONOMICS IS TO ECONOMICS." CORY DOCTOROW, BOINEBOINE.NET	8
BROWSE ARTICLES BY THEME Biology and Medicine (23) Energy & Environment (45) * Renewable & Clean Energy	How much do grade 10 students know about our energy consumption?	Keywords: Do students understand how similar we are to the machines we make? The human body and the internal combustion engine are quite similar in that they are both heat engines requiring chemical energy to run. By placing a question related to this notion on a national science contest, we attempted to discover what Grade 10 students think. Read More	SUSTAINARIE	ENERCY_
(20) » Energy Use at Home (13) » Transportation (17) » Climate (8) » Non-renewable and non-clean energy (6)	C02e	Keywords: carbon dioxide, CO2e, terminology What does the "e" mean? A brief primer on the meaning of "CO2e" Read More	WITHOUT THE HOT AIR	
 » Electricity Generation (6) » Student Projects (4) » Skills and Techniques (8) 	Commuting by car or	Keywords: bicycle, Carbon footprint, consumption, cycling, energy, Food, spreadsheets It's not actually that clear		David JC MacKay

What is the main problem?

Global CO₂ emissions per region from fossil fuel use and cement production

Canada

- 17 tonnes CO₂ per capita per year
- 23 tonnes CO₂e per capita per year
 - "e" means "equivalent", i.e. includes other GHGs

http://www.conferenceboard.ca/hcp/details/environment/greenhouse-gas-emissions.aspx

Where does it all come from?

Figure S-6: Canada's Emissions Breakdown 2010, by Economic Sector

http://www.ec.gc.ca

Let's not footle around at the edges, let's try and cut *tonnes* off our individual footprints

- Transportation
- Food
- Buildings (heating and electricity)
- Stuff

A note of realism here: we're not aiming at *solving* the problem, we're just trying to show the way to leave less of a mess for succeeding generations to clean up.

You must be the change you wish to see in the world Mahatma Gandhi

A note on methods

- Broad brush only don't get hung up on details
- No scientific notation!
 - Prefix notation: k, M, G... (x10³, 10⁶, 10⁹...)
- Units
 - Energy: Joule (J) (1 Cal = 4184 J, 1 kWh = 3.6 MJ)
 - Velocity: m/s (= 3.6 km/h)
 - Mass: kg (1 tonne = 1000 kg, 1L gas ~ 0.7 kg)
 - Fuel economy: 15 L/100km = 15 mpg (US)
 - but one goes up while the other goes down!

Transportation

• A physicist's approach:

-Energy required for transport best expressed in units: J/kg/m

-Unit of energy $J = kg.m^2/s^2$

-So J/kg/m = m/s² - an acceleration: suggests g!

- -Also J/kg/m = MJ/tonne/km in practical units
- –Gasoline: 36 MJ/L
- -Car mass: a tonne or two
- -Typical journeys: a few km

Typical energy costs per tonne per km

Energy cost of transport per total mass of laden vehicle (direct fuel consumption only)

Mode of Transport	Energy cost (MJ/tonne/km)	
Walking (5 km/h)	3	
Boeing 747-300	1.8	
Cycling (human powered, 20 km/h)	1.5	
2005 Honda Civic (2 persons)	1.4	
Electric bicycle	0.4	

All remarkably similar! – a least from a physicist's viewpoint

http://c21.phas.ubc.ca/article/energy-cost-transport

Energy cost of transport per passenger (direct fuel consumption only)

	Mode of Transport	Energy cost (MJ/passenger/km)
	Electric bicycle	0.06
	Cycling (human powered)	0.16
Typical	BC Transit Skytrain (Mark 1, 80 pass - 100% full)	0.11
values per	BC Transit Bus (Trolley, 55 pass - 100% full)	0.18
passenger	Walking	0.2
	BC Transit Bus (Diesel, 60 pass - 100% full)	0.4
	2005 Honda Civic (2 persons - 40% full)	1.0
	Boeing 747-300 (400 pass - 100% full)	1.4
	Boeing 747-300 (240 pass - 60% full)	2.3
	Intercity rail	0.2 (Shinkansen)-1.7 (Amtrak)
	Ship	2 (freight)-10 (cruise ship)

Energy - CO₂ relationship

We need a conversion factor, in kgCO₂/MJ

- Which will depend on the energy source:
 - -Hydro
 - -Nuclear
 - -Wind
 - -Natural gas
 - -Oil (gasoline, diesel)
 - –Coal
 - –Food

Chem 11

- Fossil fuels are the easiest, because most of the emissions occur when they are burnt, with relatively little coming from extraction/processing (except bitumen)
- Look up the enthalpy (heat) of combustion a.k.a higher heating value (HHV):
 - Methane (natural gas) CH_4 : 55 MJ/kg; molecular weight 16
 - Oils ~CH₂: 40s MJ/kg; molecular weight ~14 per carbon atom
 - Coal ~CH: 20-30 MJ/kg; molecular weight ~13 per carbon atom
- All remarkably similar, and determined by the strength of the hydrogen-oxygen and carbon-oxygen bonds.

http://c21.phas.ubc.ca/article/energy-and-greenhouse-gas-ghg-calculations

e.g. Gasoline: how much CO₂ per L?

 $CH_2 + ...O_2 -> CO_2 +$ 14 44

- 1 kg CH₂ burns to 44/14 = 3.14... kg CO₂
- 1 L gasoline burns to 2.2 kg CO₂
- On highway my Honda Civic: 5.8 L/100 km
- Translates to 130 g CO₂ per km

Can physics give us an idea what fuel consumption (L/100 km) to expect?

Of course.

Energy *E* (J) required to move a given distance *x* (m):

• Assume constant speed

 $- E = F_{drag} \cdot x$ (total drag force times distance)

 $\mu_{\rm r}$: coefficient of rolling friction mg: weight of vehicle [N] $C_{\rm D}$: coefficient of (air) drag A: frontal area [m²] ρ : air density [kg/m³] v: speed [m/s]

 $-E/x = F_{drag}$ (energy per unit distance is just the drag force)

 $-F_{drag} = \mu_r mg + \frac{1}{2} (C_D A)\rho v^2$ (rolling friction + air drag)

-All quantities straightforward to look up and not that hard to measure http://c21.phas.ubc.ca/article/bicycle-power

 $-F_{drag}$ increases with mass*, size, bluff shape, speed.

* and especially in stop-go traffic and going up hills, think kinetic (½ mv²) and potential energy (mgh). Coming down hill you lose potential energy if you have to use the brakes.

730 kg 3.4 L/100 km 75 gCO₂/km

2500 kg 17 L/100 km 370 gCO₂/km

Going long distances

- Water
- Rail
- Flying

Water transport sounds a good bet

- No rolling resistance in water (zero velocity, zero drag)
- Slow
- So why is the energy cost of transport per person the highest of all? Worse than flying, which is the fastest.

- A laden Boeing 747 weighs 400 tonnes, and carries about 40 tonnes of passengers and luggage*: 10% useful load.
- The Costa Concordia displaced 114,000 tonnes and carried 380 tonnes of passengers and luggage*: 0.3% useful load.
- * Assuming 100 kg for each passenger and luggage

Floating global warming

Flying

- You can easily estimate the energy required to get an airliner from A to B by noting its mass, speed and glide-slope
- Boeing 747
 - 400 tonnes
 - Glide slope 1 in 15
 - Thermal efficiency of (all) engines ~1/3
 - $E = (mgx)(3/15) \sim 800 \text{ kJ/m} = 800 \text{ GJ}/(1000 \text{ km})^*$
 - Aviation fuel ~45 GJ/tonne: 18 tonnes/(1000 km)
 - Multiply by 44/14 : 57 tonnes CO₂ /(1000 km)
 - 400 passengers for 10,000 km: 1.4 tonnes CO₂ each

http://c21.phas.ubc.ca/article/energy-cost-flying

* From first principles:

$$E \approx \frac{1}{\eta} \sqrt{\frac{C_D}{AR}} g$$
 J/kg/m

And that's not counting:

- The 22 tonnes of water (18/14) itself a potent GHG being pumped out at altitude where there shouldn't be any.
- Night flights are worse (contrails impede Earth's radiation without impeding incoming solar radiation).
- I'm only counting fuel burnt in the planes, not all the ancillary airline activity.

150 tonnes fuel x 44/14 = 470 tonnes CO₂

x 18/14 = 190 tonnes H₂O

Rail

- Recall $F_{drag} = \mu_r mg + \frac{1}{2} C_D \rho A v^2$
- For low rolling resistance, you can't beat steel on steel:

Tire Type	Coefficient of Rolling Friction
Low rolling resistance car tire	0.006 - 0.01
Ordinary car tire	0.015
Truck tire	0.006 - 0.01
Train wheel	0.001

- 0.2 MJ/pass/km (Shinkansen and other high speed networks)
- 1.7 MJ/pass/km (Amtrak)
- Watch where the electricity is coming from: e.g. nuclear (France), coal (China)

http://c21.phas.ubc.ca/article/energy-use-cars-3-rolling-resistance US DoE Transportation Energy Data Book <u>http://cta.ornl.gov/data/index.shtml</u>

Now to food: Bicycling and Walking

- Human body is a thermodynamic engine like any other, and reasonably efficient (20-25%)
- But...the fuel source (i.e. food), in terms of kgCO₂/MJ, can be horribly inefficient

"Modern agriculture is the use of land to convert petroleum into food"

Albert Bartlett

- Meat: 2.7 kgCO₂e/MJ (gasoline is ~0.07 kgCO₂e/MJ)
- Vegetables: 0.6 kgCO₂e/MJ
- So even a vegan makes ~10x the GHGs per MJ of energy than a car engine does.
- Mass of me + bicycle: 90 kg
- Mass of me + Honda Civic: 1400 kg
- Even if I was a vegan, its going to be a tight race between cycling and driving...

http://c21.phas.ubc.ca/article/commuting-car-or-cycle-which-better

Detailed calculation

- Easy but long winded (spreadsheet available on web http://c21.phas.ubc.ca/article/commuting-car-or-cycle-which-better)
 - The person in question weighs 70kg, is 180cm tall, 25 years old
 - The person loses 1kg in weight by biking to work instead of driving
 - Cycling speed is 20km/h
 - The commute is 10 km (one way) and is done 200 days per year
 - The comparison vehicle is a Honda Civic
- Conclusion:
 - A vegan cyclist commuter produces 300 kg less CO₂e than a vegan Civic driver
 - A carnivorous (exclusively) cyclist commuter produces 600 kg MORE CO_2e than a carnivorous Civic driver
- BUT...

If, by cycling, you OWN one less car:

- Cars need servicing and eventually replacing, even if left in the driveway.
- Do life-cycle analysis assuming 10y between buying new cars...
- Cycling wins hands-down, no matter what you eat.
- Even considering that exclusive carnivores produce 11 tonnes CO₂e per year just feeding themselves (compared to a vegan's 2.5 tonnes, and an average Canadian's 6 tonnes).

Conclusion

- Try to arrange your life so you can walk/cycle to work (this is needs some planning ahead).
- Eat mostly vegetables!
 - Better for your health
 - Better for your wallet
 - Better for the environment
 - Better for the animals you would have eaten

 CH_2O in one end, CO_2e out the other.

Heating (and cooling) buildings

- Buildings loose (gain) heat from the inside wall to the outside wall through conduction.
- Thereafter the heat is lost to the environment by convection and radiation.
- Power lost through conduction:
- $P = kA\Delta T/x$: conductivity x area x temp difference/thickness

6 tonnes of CO_2 p.a. just to heat my 33' lot house.

Heating/Cooling Conclusion

- Decrease k: insulate, double-glaze (low-E)
- Decrease A: choose a smaller home, reduce outside wall area (condo)
- Reduce average ΔT :
 - put a sweater (shorts) on.
 - don't leave the heat on if you are not in. (The inability to do this with a heat pump reduces its apparent advantage).
- Don't pump heat up the chimney (use a high efficiency furnace).
- Beware of power sources that are horribly expensive (PV) and/or eccentric (urban wind turbines): why?

Stuff: a rough calculation

- Canada's GDP \$1.3 trillion
- National annual emissions 690 Mtonnes CO₂e
- In the absence of more detailed information, reckon on about ½ tonne per \$1,000
 - Some economic activity worse (e.g. flying)
 - Some economic activity better (e.g. insulating your home)

Final Conclusion

- With a little thought and effort we can knock several tonnes off our personal annual CO₂ emission total (and save money in the process)
- However, most emissions remain out of our immediate control
- But don't blame others; we're all in this together
- Don't yield to lazy fatalism
- Vote