

EXPERIMENTAL NEUROLOGY 88, 198-204 (1985)

On the Brain of a Scientist: Albert Einstein

MARIAN C. DIAMOND,* ARNOLD B. SCHEIBEL,† GREER M. MURPHY, JR.,‡ AND THOMAS HARVEY¹

*Departments of Physiology-Anatomy and ‡Anthropology, University of California, Berkeley, California 94720, and †Departments of Anatomy and Psychiatry, University of California, Los Angeles, California 90024

FIG. 1. A lateral view of the human brain indicating the position of the samples removed for cell counts. A represents the sample from area 9 and B, area 39.

In Einstein's brain areas involved with math had more glial cells

The brain

Different areas of the brain are required for different attributes, such as movement, speech or sight

Deeper areas called the hippocampus are key for making memories and are damaged in dementia

Neurons in the cortex

- Dendrites- where other nerve connect (or make synapses) with nerve cells
- Cell body where the nucleus is
- Spines –points on contacts of synapses on dendrites
- Axon- output of neurons where electrical activity spreads out to synapses making contacts with other neurons

Neurons versus glia (astrocytes) in brain

From J. Lichtman lab Harvard

Astrocytes surround neurons

Astrocyte endfeet circumscribe arterioles

Mulligan & MacVicar (2004) Nature 431:195

Blood vessels of the brain

Two Photon laser scanning microscopy versus CCD fluorescence microscopy in brain slices

Tplsm 2003

CCD fluorescence

Two-photon uncaging of DM-Nitrophen at 730 nm and imaging of rhod-2

Astrocyte endfeet calcium signals control arteriole diameter

Astrocyte endfeet calcium signals control arteriole diameter

Mulligan & MacVicar (2004) Nature 431:195

Properties of astrocyte induced arteriole constrictions

- Endfeet Ca²⁺ changes precede the onset of vessel constriction by 1.2 to 2.0 sec
- Ca²⁺ elevations in astrocyte endfeet cause robust and reproducible arteriole constrictions
- Photolysis of caged Ca²⁺ in patched astrocytes induces Ca²⁺ elevations in endfeet and arteriole constrictions
- Extent of contraction follows extent of calcium waves in endfeet

Stretching of astrocyte endfeet by vascular constrictions

Uncaging astrocyte Ca2+ causes vasodilation in low O2

Grant R. J. Gordon, Hyun Beom Choi, Ravi Rungta, Graham C. R. Ellis-Davies, Brian A. MacVicar (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. **Nature** 456(7223):745-9.

mGluR activation in high O2 and low O2

High O2 vasoconstriction

tACPD 100µM for 5 min

mGluR activation in high O2 and low O2

tACPD 100µM for 5 min

Synaptic activation in high O2 and low O2

High O2

Vasoconstriction

Synaptic activation in high O2 and low O2

Low O2

Vasodilation

Brain metabolic state dictates the polarity of astrocyte control over the cerebrovasculature

- Astrocyte regulation of cerebral blood flow will be appropriate for the metabolic state of the tissueincreased CBF when metabolic demand is high due to lactate inhibition of PGE2 uptake
- Astrocytes can constrict or dilate arterioles depending on whether the brain needs more nutrients (oxygen and glucose)
- influence on cerebral blood vessels should reach homeostatic balance leading to appropriate vascular control based on metabolic need

Cerebral blood flow (CBF) needs to be matched with metabolism

- Brain 2% of body weight but cerebral blood flow 15% of total body
- O2 consumption 20% and glucose consumption 50%
- Mismatch leads to impaired CNS function e.g. Vascular dementia

Blood flow in the brain increases when synaptic activity is evoked

Microglia

Pío Del Río-Hortega (1882-1945)

Microglia: phagocyte and glia cell

- Resident immune cell of the brain.
- Activated by brain damage or infections

Central role for Microglia in Alzheimer's disease and multiple sclerosis

Microglia respond to lesions in brain slices

Neuroprotection Sequence initiated by damage requiring microglia

- 1) Surveillance
- 2) Detection of damage induction of polarity
- 3) Directed process outgrowth, frontrunners win race inhibiting late processes
- 4) Detection of damaged tissue and phagocytosis
- 6) PROTECTION!

EXPERIMENTAL NEUROLOGY 88, 198-204 (1985)

On the Brain of a Scientist: Albert Einstein

MARIAN C. DIAMOND,* ARNOLD B. SCHEIBEL,† GREER M. MURPHY, JR.,‡ AND THOMAS HARVEY¹

*Departments of Physiology-Anatomy and ‡Anthropology, University of California, Berkeley, California 94720, and †Departments of Anatomy and Psychiatry, University of California, Los Angeles, California 90024

FIG. 1. A lateral view of the human brain indicating the position of the samples removed for cell counts. A represents the sample from area 9 and B, area 39.

In Einstein's brain areas involved with math had more glial cells