

DUAL FLUID REACTOR (DFR) A New Concept For A Nuclear Power Reactor

AHMED H. HUSSEIN

DEPARTMENT OF PHYSICS
UNIVERSITY OF NORTHERN BRITISH COLUMBIA
3333 UNIVERSITY WAY, PRINCE GEORGE, BC. CANADA
AND
INSTITUTE FOR SOLID-STATE NUCLEAR PHYSICS
LEISTIKOWSTRAßE 2, 14050 BERLIN. GERMANY

FERURAY 15/22, 2014

Collaboration

Personnel

The Dual Fluid Reactor (DFR*)was developed at the Institute of Solid State Nuclear Physics by:

- Prof. Dr. Konrad Czerski,
- Dr. Armin Huke,
- Dr. Ahmed Hussein,
- Dr. Götz Ruprecht,
- Dipl.-Ing. Stephan Gottlieb, and
- Mr. Daniel Weißbach.
- Many consultants and supporters.

^{*}Patent Pending in Germany, WO2013041085 A2

Units

 Energy is measured in Joules (J). It takes about 300 kJ to boil one kilogram of water.

Units

- Energy is measured in Joules (J). It takes about 300 kJ to boil one kilogram of water.
- If water boils in 10 minutes, then energy was delivered at a rate 500 J/sec or 500 Watts (W).

Units

- Energy is measured in Joules (J). It takes about 300 kJ to boil one kilogram of water.
- If water boils in 10 minutes, then energy was delivered at a rate 500 J/sec or 500 Watts (W).
- The Watt is a unit of Power, or the rate of delivering energy.

Electricity

 An Electricity power station rated at 1000MW, delivers 1000,000,000 J/sec, or 10⁹ J/sec or 1 GJ/sec.

Electricity

- An Electricity power station rated at 1000MW, delivers 1000,000,000 J/sec, or 10⁹ J/sec or 1 GJ/sec.
- A Joule is a very small amount of Energy. Electric companies use a bigger one: kWh = 3.6 MJ.

Electricity

- An Electricity power station rated at 1000MW, delivers 1000,000,000 J/sec, or 10⁹ J/sec or 1 GJ/sec.
- A Joule is a very small amount of Energy. Electric companies use a bigger one: kWh = 3.6 MJ.
- Total energy delivered by 1000MW in one year is $3.15 \times 10^{16} J = 8.76 \text{ TWh}$.

Consumption of Electricity

 On the average, a Canadian household consumed 40 GJ of electricity in 2011, 40% of the total household consumption of energy.

Consumption of Electricity

- On the average, a Canadian household consumed 40 GJ of electricity in 2011, 40% of the total household consumption of energy.
- All Canadian households consumed 547,096 TJ of Electricity in 2011.

Consumption of Electricity

- On the average, a Canadian household consumed 40 GJ of electricity in 2011, 40% of the total household consumption of energy.
- All Canadian households consumed 547,096 TJ of Electricity in 2011.
- All Canadian households consumed 1,425,185 TJ of Energy in 2011.

Consumption of Electricity

- On the average, a Canadian household consumed 40 GJ of electricity in 2011, 40% of the total household consumption of energy.
- All Canadian households consumed 547,096 TJ of Electricity in 2011.
- All Canadian households consumed 1,425,185 TJ of Energy in 2011.
- On the average a Canadian household requires 1.3 kW (1.3 kJ/sec) of electric power.

Some General Facts

 As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.

Some General Facts

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.

Some General Facts

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.
- Nuclear power plants provided 17.1% of the world's electricity production in 2012.

Some General Facts

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.
- Nuclear power plants provided 17.1% of the world's electricity production in 2012.
- 13 countries relied on nuclear energy to supply at least 25% of their total electricity.

Current Reactors World Wide

Country	Reactors	MW_e	BkWh	% Of Total
Argentina	2	935	5,903	4.7
Armenia	1	375	2, 124	26.6
Belgium	7	5, 927	38, 464	51.0
Brazil	2	1,884	15, 170	3.1
Bulgaria	2	1,906	14,861	31.6
Canada	20	14, 135	89,060	15.3
China	17	12,860	92,652	2.0
Czech RP	6	3,804	28,603	35⋅3
Finland	4	2,752	22,063	32.6
France	58	63, 130	407, 438	74.8
Germany	9	12,068	94,098	16.1
Hungary	4	1,889	14, 763	45.9
India	20	4, 391	29,665	3.6
Iran	1	915	1,328	0.6
Japan	50	44, 215	17, 230	2.1
Korea Rep.	23	20,739	143, 550	30.4
Mexico	2	1,530	8,412	4.7

Current Reactors World Wide

Country	Reactors	MW _e	BkWh	% Of Total
Netherlands	1	482	3, 707	4.4
Pakistan	3	725	5, 271	5⋅3
Romania	2	1,300	10, 564	19.4
Russia	33	23,643	166, 293	17.8
Slovakia	4	1,816	14, 411	53.8
Slovenia	1	688	5, 244	36.0
South Africa	2	1,860	12, 398	5⋅1
Spain	8	7,560	58, 701	20.5
Sweden	10	9,395	61, 474	38⋅1
Switzerland	5	3,278	24, 445	35.9
Taiwan, China	6	5,028	38733	18-4
Ukraine	15	13, 107	84, 886	46.2
U.K.	18	9,938	63, 964	18-1
U.S.	104	102, 136	770, 719	19.0
Total	440	374, 411	2, 346, 194	NA

Reactors Under Construction World Wide

Country	Reactors	Total MW _e
Argentina	1	692
Brazil	1	1,245
China	28	27,844
China, Taiwan	2	2,600
Finland	1	1,600
France	1	1,600
India	7	4,824
Japan	2	2,650
Pakistan	2	630
Russia	11	9, 297
Slovak Republic	2	880
S. Korea	4	4,980
Ukraine	2	1,900
United Arab Emirates	2	2,690
United States	3	3,399
Total	69	66,831

Why Nuclear Power

Characteristics of a good energy source:

• High energy density.

Why Nuclear Power

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".

Why Nuclear Power

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).

Why Nuclear Power

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.

Why Nuclear Power

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.
- Long life of the resource.

Why Nuclear Power

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.
- Long life of the resource.
- Safe production and operation.

Why Nuclear Power

Energy Content of Vario	ous Sources
Source	Energy Density
Firewood (dry)	16 MJ/kg
Brown coal (lignite)	10 MJ/kg
Black coal (low quality)	13-23 MJ/kg
Black coal (hard)	24-30 MJ/kg
Natural Gas	38 MJ/m ³
Crude Oil	45-46 MJ/kg
Uranium - in typical reactor	500,000 MJ/kg
	(of natural U)

Why Nuclear Power

Energy	Content	of Various	Sources
--------	---------	------------	---------

ous oources
Energy Density
16 MJ/kg
10 MJ/kg
13-23 MJ/kg
24-30 MJ/kg
38 MJ/m ³
45-46 MJ/kg
500,000 MJ/kg
(of natural U)

Energy Content of Wind and Solar

Source	Natural Energy Flows Providing 1 kW of Available Power		
Wind	Turbine Wind speed 45 km/hr	Turbine swept area 0.85 m ²	
Willia	Wind speed 14 km/hr	Turbine swept area 31.84 m ²	
Solar PV	Surface perpendicular to the sun's rays at noon with sun directly overhead	Surface area 1m ²	
	For an hourly average of 1kW	Surface area 2.5 - 5 m ²	
	taken over a day	depending on location	

 $Source: http://www.mpoweruk.com/energy_resources.htm$

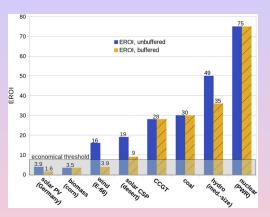


Fig. 3. EROIs of all energy techniques with economic "threshold". Biomass: Maize, 55 t/ha per year harvested (wet). Wind: Location is Northern Schleswig Holstein (2000 full-load hours). Coal: Transportation not included. Nuclear: Enrichment 83% centrifuge, 17% diffusion. PV: Roof installation. Solar CSP: Grid connection to Europe not included.

Source:

"Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants." D. Weibach, G. Ruprecht, A. Huke, K. Czerski, S. Gottlieb, A. Hussein

Why Nuclear Power

Lifecycle Greenhouse Gas Emission Estimates for Electricity Generators

101	-icotholty deficiations			
Technology	Mean	Low	High	
recritiology	C	CO ₂ Eq.	/kWh _e	
Lignite	1,054	790	1,372	
Coal	888	756	1,310	
Oil	733	547	935	
Natural Gas	499	362	891	
Solar PV	85	13	731	
Biomass	45	10	101	
Nuclear	29	2	130	
Hydroelectric	26	2	237	
Wind	26	6	124	

Source: http://www.cameco.com/common/pdf/uranium_101/Cameco_-_Corporation_Report_on_GHG_Emissions_nov_2010.pdf

Why Nuclear Power

"DeathPrint" of Various Energy Sources

Energy Source	Mortality Rate (deaths/TkWhr)	Comments
Coal global average	170,000	50% global electricity
Coal China	280,000	75% China's electricity
Coal U.S.	15,000	44% U.S. electricity
Oil	36,000	36% of energy, 8% of electricity
Natural Gas	4,000	20% global electricity
Biofuel/Biomass	24,000	21% global energy
Solar (rooftop)	440	< 1% global electricity
Wind	150	pprox 1% global electricity
Hydro global average	1,400	15% global electricity
Nuclear global average	90	17% global electricity w/Chern&Fukush

Source: http://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid

Why Nuclear Power

Life Expectancy of Fossil Fuels

Fossil Fuel	Reserves	Consumption	Year	Life Time (years)	CO ₂ Emissions (tonnes)
Natural Gas	1.90 × 10 ¹⁴ m ³	$3.37 \times 10^{12} \text{ m}^3$	2011	56	6⋅75 × 10 ⁹
Oil	1.47×10^{12} bbl	2.87×10^{10} bbl	2011	51	1.14×10^{10}
Coal	8.60×10^{11} ton	6.64×10^9 ton	2008	129	1.44×10^{10}

Source: US Energy Information Administration http://www.eia.gov

Reactors Under Construction World Wide

Reactor Type	Reactor Type Description	Number of Reactors	Total (MW _e)
BWR	Boiling Light-Water-Cooled and Moderated Reactor.	4	5, 250
FBR	Fast Breeder Reactor.	2	1,259
HTGR	High-Temperature Gas-Cooled Reactor.	1	200
LWGR	Light-Water-Cooled, Graphite-Moderated Reactor.	1	915
PHWR	Pressurized Heavy-Water-Moderated and Cooled Reactor (CANDU)	5	3, 212
PWR	Pressurized Light-Water-Moderated and Cooled Reactor.	56	55, 995
Total		69	66,831

Sources: International Atomic Energy Agency PRIS database http://www.iaea.org/programmes/a2/index.html

Nuclear Fission

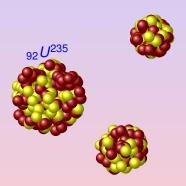
 The Cornerstone of a nuclear reactor is the fission nuclear reaction.

Nuclear Fission

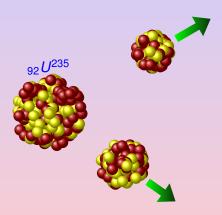
- The Cornerstone of a nuclear reactor is the fission nuclear reaction.
- There are two types of fission:

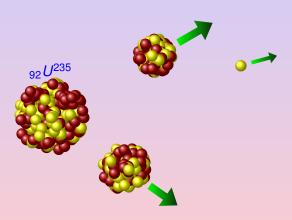
Nuclear Fission

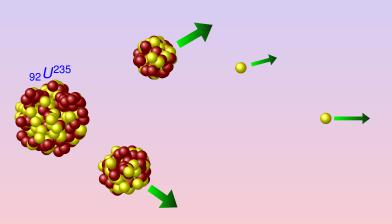
- The Cornerstone of a nuclear reactor is the fission nuclear reaction.
- There are two types of fission:
 - Spontaneous fission.

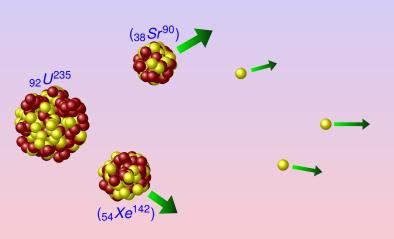

Nuclear Fission

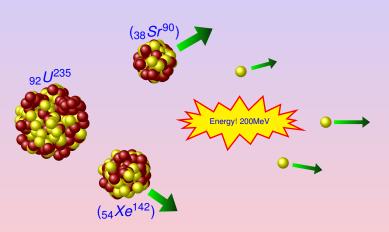
- The Cornerstone of a nuclear reactor is the fission nuclear reaction.
- There are two types of fission:
 - Spontaneous fission.
 - Neutron induced fission.

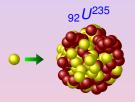


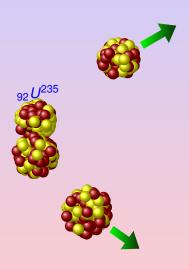


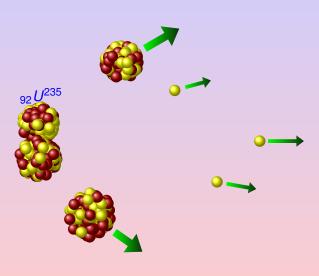


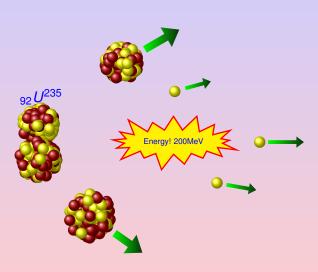


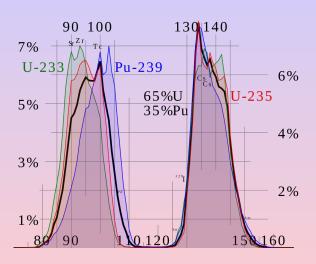




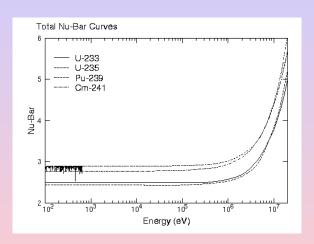








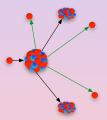
Fission Reaction

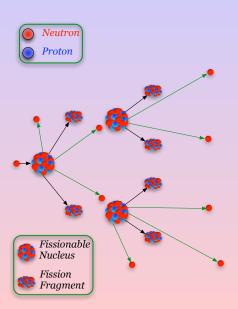


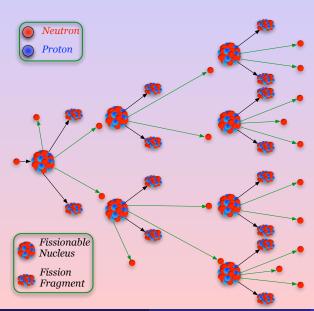
Source: http://en.wikipedia.org/wiki/Nuclear_fission_product

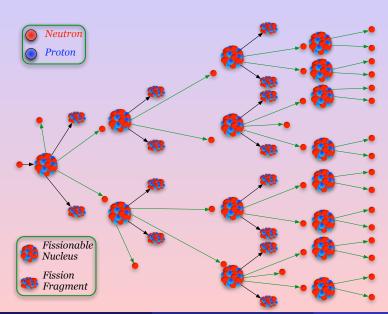
Fission Reaction

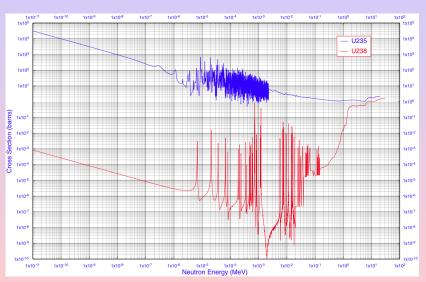
Source: http://t2.lanl.gov/endf/intro22.html

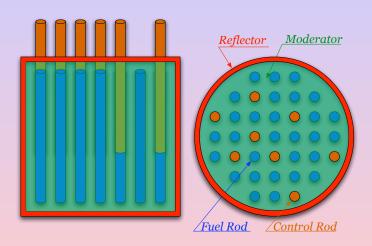


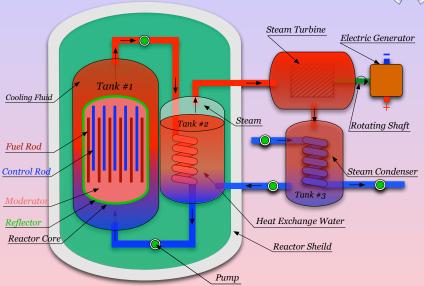









Brief Description of Nuclear Reactors


Brief Description of Nuclear Reactors

Brief Description of Nuclear Reactors

http://www.learnerstv.com/animation/animation.php?ani=160&cat=Physics

Problems With Current Reactors

ullet High Pressure \Longrightarrow special materials & extensive containment.

- ◆ High Pressure ⇒ special materials & extensive containment.
- ◆ Low Operating Temperature ⇒ low heat transfer efficiency

- ◆ High Pressure ⇒ special materials & extensive containment.
- ◆ Low Operating Temperature ⇒ low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C

- ◆ High Pressure ⇒ special materials & extensive containment.
- Low Operating Temperature

 low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C

- ◆ High Pressure ⇒ special materials & extensive containment.
- ullet Low Operating Temperature \Longrightarrow low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,

- ◆ High Pressure ⇒ special materials & extensive containment.
- ullet Low Operating Temperature \Longrightarrow low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 − 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,
- Thermal:

- ◆ High Pressure ⇒ special materials & extensive containment.
- Low Operating Temperature

 low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,
- Thermal:
 - Low neutrons per fission (average 2.5).

- ◆ High Pressure ⇒ special materials & extensive containment.
- Low Operating Temperature

 low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,
- Thermal:
 - Low neutrons per fission (average 2.5).
 - Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.

- ◆ High Pressure ⇒ special materials & extensive containment.
- ◆ Low Operating Temperature ⇒ low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,
- Thermal:
 - Low neutrons per fission (average 2.5).
 - Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
 - Produced actinides like Np, Pu, Am, Cm along with ²³⁸U accumulate and become the long half-life component of the wast.

- ◆ High Pressure ⇒ special materials & extensive containment.
- ullet Low Operating Temperature \Longrightarrow low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,
- Thermal:
 - Low neutrons per fission (average 2.5).
 - Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
 - Produced actinides like Np, Pu, Am, Cm along with ²³⁸U
 accumulate and become the long half-life component of the wast
 - Uses less than 1% of natural Uranium.

Problems With Current Reactors

- ◆ High Pressure ⇒ special materials & extensive containment.
- ◆ Low Operating Temperature ⇒ low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,

Thermal:

- Low neutrons per fission (average 2.5).
- Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
- Produced actinides like Np, Pu, Am, Cm along with ²³⁸U
 accumulate and become the long half-life component of the wast
- Uses less than 1% of natural Uranium.
- Requires extensive infrastructure for enrichment.

Problems With Current Reactors

- ◆ High Pressure ⇒ special materials & extensive containment.
- Low Operating Temperature

 low heat transfer efficiency
 - PWR \Longrightarrow 160 Atm, 180 280 $^{\circ}$ C
 - CANDU ⇒ moderator at 1 atm, coolant at 98 atm, 265 310°C
 - BWR \Longrightarrow 75 atm, 275 315 $^{\circ}$ C,

Thermal:

- Low neutrons per fission (average 2.5).
- Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
- Produced actinides like Np, Pu, Am, Cm along with ²³⁸U
 accumulate and become the long half-life component of the wast
- Uses less than 1% of natural Uranium.
- Requires extensive infrastructure for enrichment.
- Accumulated Pu opens the door for weapons proliferation.

Problems With Current Reactors

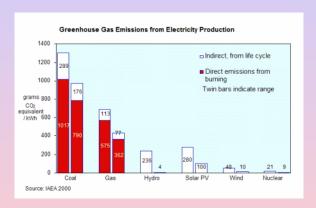
Solid Fuel

- Solid Fuel
 - Requires control Rods

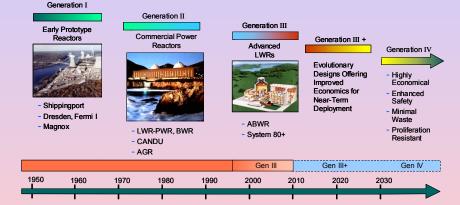
Problems With Current Reactors

- Solid Fuel
 - Requires control Rods
 - With the exception of CANDU, requires shutdown for refueling.

Problems With Current Reactors


- Solid Fuel
 - Requires control Rods
 - With the exception of CANDU, requires shutdown for refueling.
 - Requires active safety, very little passive safety features.

Problems With Current Reactors


- Solid Fuel
 - Requires control Rods
 - With the exception of CANDU, requires shutdown for refueling.
 - Requires active safety, very little passive safety features.
 - Susceptible to Core meltdown in the event of coolant loss. Due to heat from radioactive decay of fission fragments.

Nuclear Reactors

Source:

"A Technology Roadmap for Generation IV Nuclear Energy Systems"
U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.

Nuclear Reactors

Generation IV Reactors

Generation	IV Reactor St	ystems
------------	---------------	--------

donoration if it read to by terms		
System Description	Acronym	
Gas-Cooled Fast Reactor System	GFR	
Lead-Cooled Fast Reactor System	LFR	
Molten Salt Reactor System	MSR	
Sodium-Cooled Fast Reactor System	SFR	
Supercritical-Water-Cooled Reactor System	SCWR	
Very-High-Temperature Reactor System	VHTR	

Source:

"A Technology Roadmap for Generation IV Nuclear Energy Systems"
U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.

Some Details

An experimental reactor at ORNL.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U.
 The ²³³U was bred from thorium in another reactor.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U.
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:
 - A liquid fuel works

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:
 - A liquid fuel works
 - A frozen plug can provide passive safety (more on that later).

DUAL FLUID REACTOR

General Description

• DFR concept combines features form MSRE, LFR, and VHTR.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.

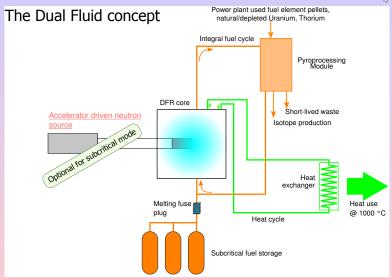
General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:

General Description


- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:
 - Molten salt for fuel, and

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:
 - Molten salt for fuel, and
 - Liquid lead for coolant.

Fuel

• The fuel will be processed on-line using the "pyroprocessing unit".

Fuel

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.

Fuel

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.

Fuel

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:

Fuel

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:
 - High mass halogens like UCl₃ and PuCl₃. With ³⁷Cl to avoid neutron Capture by ³⁵Cl and forming the long lived ³⁶Cl, or

Fuel

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:
 - High mass halogens like UCl₃ and PuCl₃. With ³⁷Cl to avoid neutron Capture by ³⁵Cl and forming the long lived ³⁶Cl, or
 - Molten metallic fuel.

Fuel

• ²³⁹Pu, ²³⁵U, natural U, natural Th, and produced actinides can be used in the fuel.

Fuel

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and produced actinides can be used in the fuel.
- DFR can consume its own produced actinides or those in the waste of other reactors.

Fuel

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and produced actinides can be used in the fuel.
- DFR can consume its own produced actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:

Fuel

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and produced actinides can be used in the fuel.
- DFR can consume its own produced actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:
 - ²³⁹Pu from ²³⁸U or

Fuel

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and produced actinides can be used in the fuel.
- DFR can consume its own produced actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:
 - ²³⁹Pu from ²³⁸U or
 - ²³³U from ²³²Th.

Coolant

Liquid Lead

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.
- A good reflector for fast neutron.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.
- A good reflector for fast neutron.
- Good heat transfer properties.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead
- A good reflector for fast neutron.
- Good heat transfer properties.
- Circulation speed will be optimized for heat transfer.

Safety

 Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.

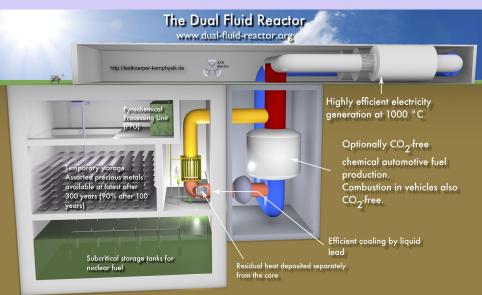
- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:

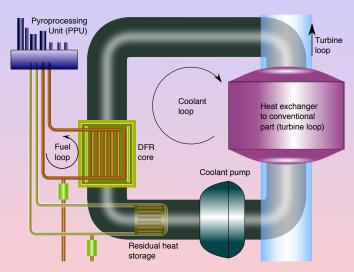
- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.

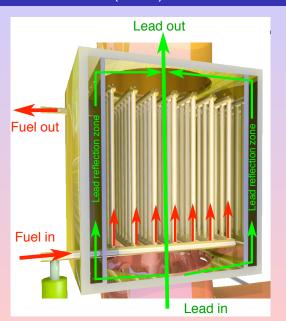
- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.



- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.
 - The decrease in liquid lead density reduces its neutron reflectivity.



- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.
 - The decrease in liquid lead density reduces its neutron reflectivity.
 - Doppler broadening of resonances increases the neutron capture cross-section.



Neutron Economy

• In U-Pu fuel cycle, Pu produces high neutron yield.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.

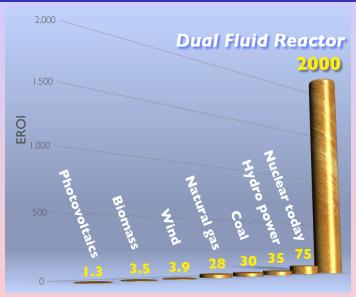
- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be achieved by consuming the neutron surplus outside the reactor core, or

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be achieved by consuming the neutron surplus outside the reactor core, or
- By injecting Th or an inert material in the fuel.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be achieved by consuming the neutron surplus outside the reactor core, or
- By injecting Th or an inert material in the fuel.
- Th-U fuel cycle produces much less neutron yield than U-Pu cycle.

Energy input of the DFR

	ergy imput or the		
Item	Units or Total	Energy Inventory	Total Inventory
	(1000 kg)	(TJ/1000 kg)	(TJ)
Concrete containment for reactor,	21000	0.0014	30
fission products and turbine building			
High performance refractory metals	60	0.5	30
and ceramics (PPU and core)			
High temperature isolation material	100	0.1	10
for PPU and core			
Initial load, isotopically purified	25 + 60	2.5/0.4	50 + 25
37Cl + fuel			
Refractory metals and ceramics	180	0.5	90
for the heat exchanger			
Isolation and structural materials,	300	0.1	30
heat exchanger			
Unfabricated, low-alloyed metal	3000	0.033	100
for fission product encapsulation			
Structural materials (steel)	1000	0.02	20
for non-nuclear part			
Lead coolant	1200	0.036	45


continued..

Energy input of the DFR

	- 37		
Item	Units or Total	Energy Inventory	Total Inventory
	(1000 kg)	(TJ/1000 kg)	(TJ)
Turbines with generators	3	40	120
Mechanical engineering parts			150
Cooling tower (special concrete)	20000	0.003	60
Refueling, 1200 kg/a actinides	≈ 60	0.4	≈ 25
over 50 years			
37CI loss compensation	2	2.5	5
Maintenance, high-performance	30 + 50	0.5/0.1	20
refractories+ isolation for 1 new core			
Maintenance, 50% of other reactor	90 + 175	0.5/0.1	62.5
parts, refractories+ isolation			
Maintenance, 50% of mechanical			135
engineering and turbines			
Maintenance electricity, 2MW over			182⋅5
20 days/a and heating, 50*0.2 TJ			
Sum			1190
Output over 50 years lifetime,			2, 250, 000
$_{\sim}$ 1500 MW net, \approx 8300 full-load hour	S		

Estimated Construction Costs (Million US\$)

Item	500 MW _e DFR	1500 MW _e DFR
Concrete containment for reactor,		
earthquake-proof	100	130
Reactor with primary circuit, features		
including a facility for pyrochemistry	250	300
Secondary gas loop	200	600
Gas turbine 500 MWe (3x),		
generator, transformer	200	500
Tertiary cooling system with		
cooling tower	140	250
Additional bunkers	140	200
Planning and building authority,		
contingency	140	200
Sum	1200	2200
Costs per installed power	2.4 US\$/W	1.5 US\$/W
-		

continued..

Construction Costs

 The above costs are well below the 3.3 US\$/W_e for a modern nuclear power station like the third generation of the European Pressurized Water Reactor.

Construction Costs

- The above costs are well below the 3.3 US\$/W_e for a modern nuclear power station like the third generation of the European Pressurized Water Reactor.
- The above estimates use a more expensive external cooling system. A different choice could reduce the costs by 10%.

Operational Costs

Estimated Annual DFR Operating Costs (million US\$)

Estimated Annual Di 11 Operating	y 00313 (11111110	π σσφ)
Item	500 MW _e	1500 MW _e
Operating personnel: 30 man-years	4	5
(3 shifts 10/12 man-years each 130,000 US\$)		
Operating supplies	1.5	2.5
Nuclear fuel: 500 kg	0.5	0.5
(330 US\$ mining, 330 US\$ transport,		
650 US\$ per kg waste management)		
Maintenance, conventional section	9	25
(2.5% building costs per annum)		
Maintenance, nuclear and pyrochemical section	5.5	7
(2% building costs per annum)		
Reserve for dismantling	5	9
(25% of the building cost of 1000/1900 million US\$)		
Administration, safety	2.5	4
Sum	26	53

Electricity Costs

Estimated Total Costs OF Electricity Produced With DFR In US¢/kWh

Item	500 MW _e	1500 MW _e
Capital costs	0.60	0.35
Operating costs	0.65	0.45
Sum	1.25	0.80
DFR/PWR or Coal	0.30	0.20

Note1: PWR \equiv Pressurized Water Reactor, most commonly used reactor.

Note2: Cost of electricity produced by Coal fired power stations are close to those produced by PWRs.

continued..

What Is "DFR?"

DFR Is A Nuclear Reactor That:

Is immune from core melt down,

What Is "DFR?"

DFR Is A Nuclear Reactor That:

- Is immune from core melt down,
- Does not accumulate weapons fissile fuels (like ²³⁹ Pu),

DFR Is A Nuclear Reactor That:

- Is immune from core melt down,
- Does not accumulate weapons fissile fuels (like ²³⁹Pu),
- Produces considerably less radioactive waste,

DFR Is A Nuclear Reactor That:

- Is immune from core melt down,
- Does not accumulate weapons fissile fuels (like ²³⁹ Pu),
- Produces considerably less radioactive waste,
- Is compact and operates under atmospheric pressure,

DFR Is A Nuclear Reactor That:

- Is immune from core melt down,
- Does not accumulate weapons fissile fuels (like ²³⁹Pu),
- Produces considerably less radioactive waste,
- Is compact and operates under atmospheric pressure,
- Can operate under subcritical conditions, and an accelerator is used to provide extra neutrons to achieve criticality,

DFR Is A Nuclear Reactor That:

- Is immune from core melt down,
- Does not accumulate weapons fissile fuels (like ²³⁹Pu),
- Produces considerably less radioactive waste,
- Is compact and operates under atmospheric pressure,
- Can operate under subcritical conditions, and an accelerator is used to provide extra neutrons to achieve criticality,
 - In case of emergency (e.g. power failure), the accelerator turns off instantly, and the reactor becomes subcritical,

DFR Is A Nuclear Reactor That:

• Operates at high temperature \approx 1000°C, and atmospheric pressure:

DFR Is A Nuclear Reactor That:

- Operates at high temperature ≈1000°C, and atmospheric pressure:
 - very efficient heat transfer, and

DFR Is A Nuclear Reactor That:

- Operates at high temperature ≈1000°C, and atmospheric pressure:
 - very efficient heat transfer, and
 - simplify choice of materials

DFR Is A Nuclear Reactor That:

- Operates at high temperature ≈1000°C, and atmospheric pressure:
 - very efficient heat transfer, and
 - simplify choice of materials
- Uses no water, so it can be build anywhere, including underground.

DFR Is A Nuclear Reactor That:

• Is a Fast Reactor, uses fast neutrons and not thermal neutrons like most current power reactors,

DFR Is A Nuclear Reactor That:

- Is a Fast Reactor, uses fast neutrons and not thermal neutrons like most current power reactors,
 - Fast neutron fission produces more neutrons per fission than thermal fission.

DFR Is A Nuclear Reactor That:

- Is a Fast Reactor, uses fast neutrons and not thermal neutrons like most current power reactors,
 - Fast neutron fission produces more neutrons per fission than thermal fission.
 - As a fast reactor it uses natural Uranium/Thorium/Plutonium, eliminating the need for uranium enrichment facilities,

DFR Is A Nuclear Reactor That:

- Is a Fast Reactor, uses fast neutrons and not thermal neutrons like most current power reactors,
 - Fast neutron fission produces more neutrons per fission than thermal fission.
 - As a fast reactor it uses natural Uranium/Thorium/Plutonium, eliminating the need for uranium enrichment facilities.
 - Using fast neutrons eliminates the need for a moderator, simplifying the design and reducing radioactive waste.

DFR Is A Nuclear Reactor That:

- Is a Fast Reactor, uses fast neutrons and not thermal neutrons like most current power reactors,
 - Fast neutron fission produces more neutrons per fission than thermal fission.
 - As a fast reactor it uses natural Uranium/Thorium/Plutonium, eliminating the need for uranium enrichment facilities.
 - Using fast neutrons eliminates the need for a **moderator**, simplifying the design and reducing radioactive waste.
 - The excess neutrons can be used to convert "long life" waste from current reactors to "short life wast".

DFR Is A Nuclear Reactor That:

 Has the highest Energy Returned On Energy Invested (EROEI) among all sources including all fossil fuels, all renewables, and current nuclear reactors.

EROEI For Different Electricity Generating Technologies

Power plant technology	ERoEl
Run-of-the-river hydroelectricity	36
Black-coal fired power	29
Gas-steam power	28
Solar thermal (desert)	9
Wind power (german coast)	4
Photovoltaics (desert)	2.3
Pressurized water reactor	75
DFR (500 MWe)*	1000
DFR (1500 MWe)*	1800

^{*}EROEI for DFR may increase by 25% if cyclone separator heat exchanger works.

Application of DFR

Production of Electricity,

Application of DFR

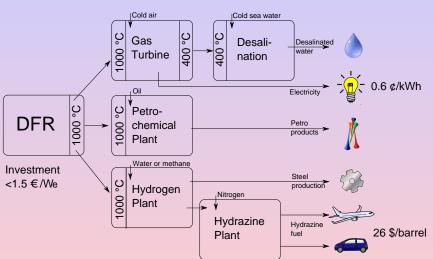
- Production of Electricity,
- Water desalination,

Application of DFR

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,

Application of DFR

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,
- Production of medical & industrial isotopes.



Application of DFR

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,
- Production of medical & industrial isotopes.
- Many others.

DFR Applications

Synthetic Automotive Fuels

 DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.

Synthetic Automotive Fuels

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.

Synthetic Automotive Fuels

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.
- DFR can then be used as a very low cost source of Hydrogen gas from water through combined electrolysis and thermal decomposition

Synthetic Automotive Fuels

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.
- DFR can then be used as a very low cost source of Hydrogen gas from water through combined electrolysis and thermal decomposition
- This cheap Hydrogen makes the production of Nitrogen and Silicon based synthetic automotive fuels economically viable.

Synthetic Automotive Fuels

 The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.

Synthetic Automotive Fuels

- The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.
- In addition some automotive fuels can be synthesized from other sources like biomass, corn, natural gas, etc.

Synthetic Automotive Fuels

- The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.
- In addition some automotive fuels can be synthesized from other sources like biomass, corn, natural gas, etc.
- All these fuels are "organic fuels", based on carbon and hydrogen. As a result, they all produce Carbon Dioxide as they burn.

Synthetic Automotive Fuels

There are other synthesized fuels that are not based on Carbon.
 Examples are Hydrazine and Silane

Synthetic Automotive Fuels

- There are other synthesized fuels that are not based on Carbon.
 Examples are Hydrazine and Silane
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen

Synthetic Automotive Fuels

- There are other synthesized fuels that are not based on Carbon.
 Examples are Hydrazine and Silane
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.

Synthetic Automotive Fuels

- There are other synthesized fuels that are not based on Carbon.
 Examples are Hydrazine and Silane
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.
- It can be used in automotive combustion engines with proper additives, resulting in Water Vapour and Nitrogen as waste.

Synthetic Automotive Fuels

- There are other synthesized fuels that are not based on Carbon.
 Examples are Hydrazine and Silane
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.
- It can be used in automotive combustion engines with proper additives, resulting in Water Vapour and Nitrogen as waste.
- Similarly, Silane burns to Water Vapour and Silicon Nitride, an inert compound.

Synthetic Automotive Fuels

• In addition, Hydrazine and Silane have a wide range of industrial applications.

Synthetic Automotive Fuels

- In addition, Hydrazine and Silane have a wide range of industrial applications.
- The hazardous properties and toxicity of these fuels are similar to Gasoline.