The Physics of Extreme Weather

Perry Samson
University of Michigan
Quick Quiz

Rank Causes of Death Per Million in USA*

1. Alcohol Use
2. Drug Use
3. Firearm accidents
4. Mibrobial Agents
5. Motor Vehicle Crashes
6. Obesity
7. Terrorist acts
8. Tobacco Use
9. Weather related disaster
Quick Quiz

Rank Causes of Death Per Million in USA

1. Alcohol Use
2. Drug Use
3. Firearm accidents
4. Microbiological Agents
5. Motor Vehicle Crashes
6. Obesity
7. Terrorist acts
8. Tobacco Use
9. Weather related disaster

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Death Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alcohol Use</td>
<td>1450</td>
</tr>
<tr>
<td>2</td>
<td>Drug Use</td>
<td>1333</td>
</tr>
<tr>
<td>3</td>
<td>Firearm accidents</td>
<td>283</td>
</tr>
<tr>
<td>4</td>
<td>Microbiological Agents</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>Motor Vehicle Crashes</td>
<td>143</td>
</tr>
<tr>
<td>6</td>
<td>Obesity</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>Terrorist acts</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Tobacco Use</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Weather related disaster</td>
<td>0.00001</td>
</tr>
</tbody>
</table>
Quick Quiz II

Rank Causes of Death By Weather Events

1. Cold
2. Flood
3. Hail
4. Heat
5. Hurricane
6. Lightning
7. Thunderstorms
8. Tornado
9. Winter/Cold
Quick Quiz II

Rank Causes of Death By Weather Events

1. Cold
2. Flood
3. Hail
4. Heat
5. Hurricane
6. Lightning
7. Thunderstorms
8. Tornado
9. Winter

- Cold: 43%
- Flood: 15%
- Hail: 11%
- Heat: 8%
- Hurricane: 5%
- Lightning: 3%
- Thunderstorms: 10%
- Tornadoes: 5%
- Winter: 5%
<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Fatalities</th>
<th>Other Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>14,802</td>
<td>Temperatures soared to 104 degrees Fahrenheit in parts of the country; temperatures in Paris were the highest since record-keeping began in 1873.</td>
</tr>
<tr>
<td>Germany</td>
<td>7,000</td>
<td>High temperatures of up to 105.4 degrees Fahrenheit, the hottest since records began in 1901, raised mortality some 10 percent above average.</td>
</tr>
<tr>
<td>Spain</td>
<td>4,230</td>
<td>High temperatures coupled with elevated ground-level ozone concentrations exceeding the European Union's health-risk threshold.</td>
</tr>
<tr>
<td>Italy</td>
<td>4,175</td>
<td>Temperatures in parts of the country averaged 16 degrees Fahrenheit higher than previous year.</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2,045</td>
<td>The first triple digit (Fahrenheit) temperatures were recorded in London.</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,400</td>
<td>Temperatures ranged some 14 degrees Fahrenheit warmer than normal.</td>
</tr>
<tr>
<td>Portugal</td>
<td>1,316</td>
<td>Temperatures were above 104 degrees Fahrenheit throughout much of the country.</td>
</tr>
<tr>
<td>Belgium</td>
<td>150</td>
<td>Temperatures exceeded any in the Royal Meteorological Society's records dating back to 1833.</td>
</tr>
<tr>
<td>TOTAL OF ABOVE COUNTRIES</td>
<td>35,118</td>
<td>**</td>
</tr>
</tbody>
</table>
Number of deaths by selected characteristics
(Rome, Italy, June-August 2003)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th># deaths reported</th>
<th># deaths expected</th>
<th>Excess deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-64</td>
<td>840</td>
<td>870</td>
<td>-30</td>
</tr>
<tr>
<td>65-74</td>
<td>1,150</td>
<td>1,084</td>
<td>66</td>
</tr>
<tr>
<td>75-84</td>
<td>1,919</td>
<td>1,484</td>
<td>435</td>
</tr>
<tr>
<td>≥85</td>
<td>1,985</td>
<td>1,362</td>
<td>623</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2,689</td>
<td>2,379</td>
<td>310</td>
</tr>
<tr>
<td>Female</td>
<td>3,205</td>
<td>2,421</td>
<td>784</td>
</tr>
<tr>
<td>Location of death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In hospital</td>
<td>2,223</td>
<td>2,088</td>
<td>135</td>
</tr>
<tr>
<td>Out of hospital</td>
<td>1,170</td>
<td>954</td>
<td>216</td>
</tr>
<tr>
<td>Socioeconomic level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>824</td>
<td>778</td>
<td>46</td>
</tr>
<tr>
<td>Medium High</td>
<td>1,227</td>
<td>11,195</td>
<td>32</td>
</tr>
<tr>
<td>Medium Low</td>
<td>1,144</td>
<td>1,016</td>
<td>128</td>
</tr>
<tr>
<td>Low</td>
<td>789</td>
<td>670</td>
<td>119</td>
</tr>
</tbody>
</table>
Albedo = 30/100
Albedo = 30/100

Shortwave

- Convection: -7
- Evaporation: -23
- Infrared Lost: -117
- Infrared Gained: -96

Longwave

- Convection: +6
- Evaporation: +23
- Infrared Lost: +111
- Infrared Gained: +64
The **specific heat capacity** of a solid or liquid is defined as the heat required to raise unit mass of substance by one degree of temperature.

\[
\text{Heat supplied} = \text{mass} \times \text{specific heat capacity} \times \text{change in temperature}
\]

\[\Delta Q = m \cdot c \cdot \Delta T\]
Snowstorms, Blizzards, Nor’easters, Squall Lines
Pressure Gradient Force

Air Column 1

City 1
Same Pressure

Air Column 2

City 2
Same Pressure

COLD

WARM

Low

High
Coriolis Force

Northern Hemisphere

departure point
North Pole
South Pole

destination
City Name

line key
- apparent path
- actual path

fly QUIT
Coriolis Force
1. Draw Isoheights

- 300 mb
- 500 mb
- 700 mb
- 850 mb

Pressure levels:
- 55°F
- 1000 mb
2. Draw Isoheights

300 mb
500 mb
700 mb
850 mb

30°F 40°F 50°F 60°F 70°F 80°F

SSM DTW CIN ASH SUV MIA

1000 mb
3. Draw Isoheights
THUNDERSTORMS

http://www.youtube.com/watch?v=cl0aw87LqA
GOES-9

Rapid-scan test
8 am - 8 pm EDT
July 2, 1995

South Florida

July 13th edition

1995 Jul 2 12:11 UTC
Evaporative Cooling

- 2000 m: $T = 12°C$
- 1500 m: $T = 17°C$
- 1000 m: $T = 22°C$
- 500 m: $T = 27°C$
- $500 m$: $T = 32°C$

$T = 26°C$

$T = 21°C$

$T = 18°C$

$T = 15°C$

Virga

$T = 12°C$

$T = 17°C$

$T = 22°C$

$T = 27°C$
TORNADOES

Summer Vacation

Manitoba F5
Tornadoes

Number of Tornado Deaths per Month

- January (JAN)
- February (FEB)
- March (MAR)
- April (APR)
- May (MAY)
- June (JUN)
- July (JUL)
- August (AUG)
- September (SEP)
- October (OCT)
- November (NOV)
- December (DEC)
Tornadoes

- Annual
- 10 Year Average
Tornadoes

Conditions

1. Convective Instability
2. Wind Shear
3. Trigger