Failures of Classical Physics and the Birth of Quantum Mechanics

Mark Van Raamsdonk

The classical description of light

Light, X-rays, microwaves, radio waves, are all examples of *ELECTROMAGNETIC RADIATION*:

Properties of Light

Colour: determined by wavelength

Intensity: determined by amplitude

Light carries energy

Energy Intensity Amplitude Squared

Q: How can we make some electromagnetic radiation?

Q: How can we make some electromagnetic radiation?

A: Shake some charges

Power radiated

acceleration squared

Failures of classical physics I

"Planetary" picture of atom:

Electrons orbiting around nucleus

Sounds okay, but...

Orbiting charge would produce EM radiation

This carries away energy

Electron losing energy spirals into nucleus

All matter as we know it ceases to exist in 10⁻¹⁰s.

Failures of classical physics II

Light from any source is a combination of wavelengths and intensities.

19th century physicists completely failed to explain observed spectrum of light from hot objects

Even more mysterious: spectrum of light from gases of pure elements

The photoelectric effect

Observation: electrons ejected from metal when light is turned on

The photoelectric effect: explained

Electrons trapped in metal (attracted to positive nuclei)

Can free them if we provide enough energy

Energy carried by light can be transferred to electrons

BUT: we only see the effect for certain colours!?

Very intense red light: No electrons

Feeble blue light: Electrons emitted

Einstein to the Rescue

Einstein's idea: light made of "photons" = lumps with energy inversely proportional to wavelength

Einstein's explanation

Electrons can only absorb energy from individual photons

Only light with short enough wavelength has photons with enough energy to eject an electron

Einstein's Only Nobel Prize

Quantitative prediction (1905): maximum kinetic energy of ejected electrons increases linearly with inverse of wavelength (photon energy)

Experimental verification by Milliakan in 1915

Nobel prize for Einstein in 1921

Today: can use photoelectric effect to "see" individual photons