DUAL FLUID REACTOR (DFR)* A New Concept For A Nuclear Power Reactor

AHMED H. HUSSEIN

DEPARTMENT OF PHYSICS UNIVERSITY OF NORTHERN BRITISH COLUMBIA 3333 UNIVERSITY WAY, PRINCE GEORGE, BC. CANADA AND INSTITUTE FOR SOLID-STATE NUCLEAR PHYSICS LEISTIKOWSTRAßE 2, 14050 BERLIN. GERMANY

JUNE 24, 2013

*Patent pending: http://www.google.com/patents/WO2013041085A2?cl=en

Dual Fluid Reactor (DFR)

Collaboration

Institution & Personel

The Dual fluid Reactor was developed at the Institute For Solid-State Nuclear Physics in Berlin, Germany. http://festkoerper-kernphysik.de

- Dr. Konrad Czerski,
- Dr. Armin Huke,
- Dr. Ahmed Hussein,
- Dr. Götz Ruprecht,
- Dipl.-Ing. Stephan Gottlieb, and
- Daniel Weißbach
- Dario Gigliotti.
- + supporters and advisors

• As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.
- Nuclear power plants provided 12.9% of the world's electricity production in 2012.

- As of June 13, 2013, 31 countries worldwide are operating 440 nuclear reactors for electricity generation.
- 69 new nuclear plants are under construction in 14 countries.
- Nuclear power plants provided 12.9% of the world's electricity production in 2012.
- 13 countries relied on nuclear energy to supply at least 25% of their total electricity.

World Wide Use of Nuclear Power

Current Reactors World Wide

Country	Reactors	MW _e	BkWh	% Of Total
Argentina	2	935	5,903	4.7
Armenia	1	375	2, 124	26.6
Belgium	7	5, 927	38, 464	51·0
Brazil	2	1,884	15, 170	3.1
Bulgaria	2	1,906	14,861	31.6
Canada	20	14, 135	89,060	15.3
China	17	12,860	92,652	2.0
Czech RP	6	3,804	28,603	35.3
Finland	4	2,752	22,063	32.6
France	58	63, 130	407, 438	74.8
Germany	9	12,068	94,098	16.1
Hungary	4	1,889	14,763	45·9
India	20	4, 391	29,665	3.6
Iran	1	915	1,328	0.6
Japan	50	44, 215	17,230	2.1
Korea Rep.	23	20, 739	143, 550	30.4
Mexico	2	1,530	8,412	4.7

continued..

(IEEE Vancouver & TRIUMF)

Current Reactors World Wide

Country	Reactors	MWe	BkWh	% Of Total
Netherlands	1	482	3,707	4.4
Pakistan	3	725	5, 271	5.3
Romania	2	1,300	10, 564	19.4
Russia	33	23,643	166, 293	17.8
Slovakia	4	1,816	14, 411	53.8
Slovenia	1	688	5, 244	36.0
South Africa	2	1,860	12, 398	5.1
Spain	8	7,560	58, 701	20.5
Sweden	10	9,395	61, 474	38-1
Switzerland	5	3,278	24, 445	35.9
Taiwan, China	6	5,028	38733	18·4
Ukraine	15	13, 107	84, 886	46.2
U.K.	18	9,938	63, 964	18-1
U.S.	104	102, 136	770, 719	19 .0
Total	440	374,411	2,346,194	NA

Reactors Under Construction World Wide

Country	Reactors	Total MW _e
Argentina	1	692
Brazil	1	1,245
China	28	27,844
China, Taiwan	2	2,600
Finland	1	1,600
France	1	1,600
India	7	4,824
Japan	2	2,650
Pakistan	2	630
Russia	11	9,297
Slovak Republic	2	880
S. Korea	4	4,980
Ukraine	2	1,900
United Arab Emirates	2	2,690
United States	3	3,399
Total	69	66,831

Characteristics of a good energy source:

• High energy density.

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.
- Long life of the resource.

- High energy density.
- High "Energy Returned On Energy Invested (EROI)".
- Can be used to to provide base load energy demand. (minimum demand, constant rate).
- Minimum pollution and emission of "Green House Gases (GHG)" through the life cycle.
- Long life of the resource.
- Safe production and operation.

Energy Content of Various Sources		
Source	Energy Density	
Firewood (dry)	16 MJ/kg	
Brown coal (lignite)	10 MJ/kg	
Black coal (low quality)	13-23 MJ/kg	
Black coal (hard)	24-30 MJ/kg	
Natural Gas	38 MJ/m ³	
Crude Oil	45-46 MJ/kg	
Uranium - in typical reactor	500,000 MJ/kg	
	(of natural U)	

(IEEE Vancouver & TRIUMF)

Why Nuclear Power

Energy Content of Vario	ous Sources
Source	Energy Density
Firewood (dry)	16 MJ/kg
Brown coal (lignite)	10 MJ/kg
Black coal (low quality)	13-23 MJ/kg
Black coal (hard)	24-30 MJ/kg
Natural Gas	38 MJ/m ³
Crude Oil	45-46 MJ/kg
Uranium - in typical reactor	500,000 MJ/kg
	(of natural U)

Energy Content of Wind and Solar

Source	Natural Energy Flows Providing 1 kW of Available Power		
Wind	Turbine Wind speed 12.5 m/s	Turbine swept area 0.85 m ²	
VVIIIG	Wind speed 4 m/s	Turbine swept area 31.84 m ²	
Solar PV	Surface perpendicular to the sun's rays at noon with sun directly overhead	Surface area 1m ²	
	For an hourly average of 1kW	Surface area 2.5 - 5 m ²	
	taken over a day	depending on location	

Source: http://www.mpoweruk.com/energy_resources.htm

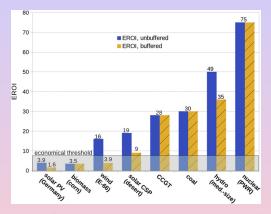


Fig. 3. EROIs of all energy techniques with economic "threshold". *Biomass*: Maize, 55 t/ ha per year harvested (wet). *Wind*: Location is Northern Schleswig Holstein (2000 fullload hours). *Coal*: Transportation not included. *Nuclear*: Enrichment 83% centrifuge, 17% diffusion. *PV*: Roof installation. *Solar* CSP: Grid connection to Europe not included.

Source:

"Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants." D. Weibach, G. Ruprecht, A. Huke, K. Czerski , S. Gottlieb, A. Hussein Energy 52(2013)210-221.

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

Lifecycle Greenhouse Gas Emission Estimates for Electricity Generators					
Tashaalaay	Mean	Low	High		
Technology	g CO ₂ Eq./kWh _e				
Lignite	1,054	790	1,372		
Coal	888	756	1,310		
Oil	733	547	935		
Natural Gas	499	362	891		
Solar PV	85	13	731		
Biomass	45	10	101		
Nuclear	29	2	130		
Hydroelectric	26	2	237		
Wind	26	6	124		

Source: http://www.cameco.com/common/pdf/uranium_101/Cameco_-_Corporation_Report_on_GHG_Emissions_nov_2010.pdf

"DeathPrint" of Various Er	nergy Sources
----------------------------	---------------

Energy Source	Mortality Rate (deaths/TkWhr)	Comments
Coal global average	170,000	50% global electricity
Coal China	280,000	75% China's electricity
Coal U.S.	15,000	44% U.S. electricity
Oil	36,000	36% of energy, 8% of electricity
Natural Gas	4,000	20% global electricity
Biofuel/Biomass	24,000	21% global energy
Solar (rooftop)	440	< 1% global electricity
Wind	150	\approx 1% global electricity
Hydro global average	1,400	15% global electricity
Nuclear global average	90	17% global electricity w/Chern&Fukush

Source: http://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid

Fossil Fuel	Reserves	Consumption	Year	Life Time (years)	CO ₂ Emissions (tonnes)
Natural Gas	$1.90 imes 10^{14} \text{ m}^3$	$3.37 \times 10^{12} \text{ m}^3$	2011	56	$1.29 imes 10^7$
Oil	$1.47 imes 10^{12}$ bbl	$2.87 imes 10^{10}$ bbl	2011	51	$1.14 imes 10^{10}$
Coal	8.60×10^{11} ton	6.64×10^9 ton	2008	129	$1.30 imes 10^{10}$

Source: US Energy Information Administration http://www.eia.gov

Reactors Under Construction World Wide

Reactor Type	Reactor Type Description	Number of Reactors	Total (MW _e)
BWR	Boiling Light-Water-Cooled and Moderated Reactor.	4	5,250
FBR	Fast Breeder Reactor.	2	1,259
HTGR	High-Temperature Gas-Cooled Reactor.	1	200
LWGR	Light-Water-Cooled, Graphite-Moderated Reactor.	1	915
PHWR	Pressurized Heavy-Water-Moderated and Cooled Reactor (CANDU)	5	3,212
PWR	Pressurized Light-Water-Moderated and Cooled Reactor.	56	55,995
Total		69	66,831

Sources: International Atomic Energy Agency PRIS database http://www.iaea.org/programmes/a2/index.html

• Most commonly used reactor types for civilian power are:

Most commonly used reactor types for civilian power are:
 Pressurized Water Reactor (PWR),

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:
 - Water (light or heavy) as a coolant and moderator,

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:
 - Water (light or heavy) as a coolant and moderator,
 - High Pressures 75-160 atm.

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:
 - Water (light or heavy) as a coolant and moderator,
 - High Pressures 75-160 atm.
 - Relatively low temperatures 150 350°C.

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:
 - Water (light or heavy) as a coolant and moderator,
 - High Pressures 75-160 atm.
 - Relatively low temperatures 150 350°C.
 - Thermal neutron spectrum.

- Most commonly used reactor types for civilian power are:
 - Pressurized Water Reactor (PWR),
 - Pressurized Heavy Water Reactor (Canada Deuterium Uranium CANDU),
 - Boiling Water Reactor (BWR).
- All These Reactors Use:
 - Water (light or heavy) as a coolant and moderator,
 - High Pressures 75-160 atm.
 - Relatively low temperatures 150 350°C.
 - Thermal neutron spectrum.
 - Solid Fuel.

Problems With Current Reactors

• High Pressure \implies special materials & extensive containment.

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, $265 310^{\circ}C$

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,

• Thermal:

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,
- Thermal:
 - Low neutrons per fission (average 2.5)

Problems With Current Reactors

- High Pressure special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,
- Thermal:
 - Low neutrons per fission (average 2.5)
 - Not enough to reach and maintain criticality \implies enrichment (\approx 3 5%). Except CANDU.

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,

• Thermal:

- Low neutrons per fission (average 2.5)
- Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
- Produced actinides like Np, Pu, Am, Cm along with ²³⁸U accumulate and become the long half-life component of the wast.

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,

• Thermal:

- Low neutrons per fission (average 2.5)
- Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
- Produced actinides like Np, Pu, Am, Cm along with ²³⁸U accumulate and become the long half-life component of the wast.
- Uses less than 1% of Uranium

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,
- Thermal:
 - Low neutrons per fission (average 2.5)
 - Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
 - Produced actinides like Np, Pu, Am, Cm along with ²³⁸U accumulate and become the long half-life component of the wast.
 - Uses less than 1% of Uranium
 - Requires extensive infrastructure for enrichment.

Problems With Current Reactors

- High Pressure \implies special materials & extensive containment.
- Low Operating Temperature \implies low heat transfer efficiency
 - PWR \implies 160 Atm, 180 280°C
 - CANDU \implies moderator at 1 atm cooalnt at 98 atm, 265 310°C
 - BWR \implies 75 atm, 275 315°C,

• Thermal:

- Low neutrons per fission (average 2.5)
- Not enough to reach and maintain criticality \implies enrichment ($\approx 3-5\%$). Except CANDU.
- Produced actinides like Np, Pu, Am, Cm along with ²³⁸U accumulate and become the long half-life component of the wast.
- Uses less than 1% of Uranium
- Requires extensive infrastructure for enrichment.
- Accumulated Pu opens the door for weapons proliferation.

• Solid Fuel

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

JUNE 24, 2013 17 / 50

- Solid Fuel
 - Requires control Rods

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

JUNE 24, 2013 17 / 50

Solid Fuel

- Requires control Rods
- With the exception of CANDU, requires shutdown for refueling

Solid Fuel

- Requires control Rods
- With the exception of CANDU, requires shutdown for refueling
- Requires active safety, very little passive safety features.

• Fast Reactors:

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

JUNE 24, 2013 18 / 50

- Fast Reactors:
 - No Moderator \implies fast neutron spectrum.

- Fast Reactors:
 - No Moderator \implies fast neutron spectrum.
 - Solid fuel and liquid metal cooling (Mainly Sodium, Lead)

- No Moderator \implies fast neutron spectrum.
- Solid fuel and liquid metal cooling (Mainly Sodium, Lead)
- Control through neutron absorbing rods

Fast Reactors

Fast Reactors

• Fast Reactors:

• Since 1951 there has been 22 fast reactors.

- Fast Reactors:
 - Since 1951 there has been 22 fast reactors.
 - Experimental, Demo or prototype, and Commercial.

Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.

Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% $^{235}\text{U}.$

Fast Reactors

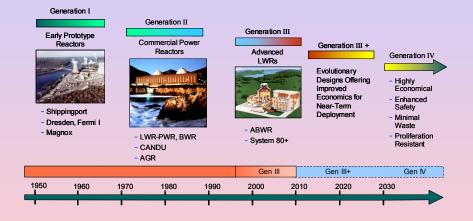
- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% ²³⁵U.
- Fast neutron fission produces more neutrons per fission than thermal neutron fission.

Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% ²³⁵U.
- Fast neutron fission produces more neutrons per fission than thermal neutron fission.
- After neutron losses there will be enough for breeding new fuels.

Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% ²³⁵U.
- Fast neutron fission produces more neutrons per fission than thermal neutron fission.
- After neutron losses there will be enough for breeding new fuels.
- The high concentration of fissionable material + the extra neutron compensate for the low $\sigma_{fission}$.


Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% ²³⁵U.
- Fast neutron fission produces more neutrons per fission than thermal neutron fission.
- After neutron losses there will be enough for breeding new fuels.
- The high concentration of fissionable material + the extra neutron compensate for the low $\sigma_{fission}$.
- $(\sigma_f/\sigma_c)_{fast} > (\sigma_f/\sigma_c)_{slow}$ for fission actinides.

Fast Reactors

- Since 1951 there has been 22 fast reactors.
- Experimental, Demo or prototype, and Commercial.
- In China, India, France, Germany, Japan, Kazakhstan, UK, and USA.
- All use solid fuel of Plutonium + Natural Uranium or Uranium with 20% ²³⁵U.
- Fast neutron fission produces more neutrons per fission than thermal neutron fission.
- After neutron losses there will be enough for breeding new fuels.
- The high concentration of fissionable material + the extra neutron compensate for the low $\sigma_{fission}$.
- $(\sigma_f/\sigma_c)_{fast} > (\sigma_f/\sigma_c)_{slow}$ for fission actinides.
- Prolifiration resistant.

Nuclear Reactors

Source:

"A Technology Roadmap for Generation IV Nuclear Energy Systems"

U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.

Dual Fluid Reactor (DFR)

Generation IV Reactors

Generation IV Reactor Systems	
System Description	Acronym
Gas-Cooled Fast Reactor System	GFR
Lead-Cooled Fast Reactor System	LFR
Molten Salt Reactor System	MSR
Sodium-Cooled Fast Reactor System	SFR
Supercritical-Water-Cooled Reactor System	SCWR
Very-High-Temperature Reactor System	VHTR

Source:

"A Technology Roadmap for Generation IV Nuclear Energy Systems" U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.

Some Details

• An experimental reactor at ORNL.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:

The Molten Salt Reactor Experiment

Some Details

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:
 - A liquid fuel works

The Molten Salt Reactor Experiment

Some Details

- An experimental reactor at ORNL.
- Constructed 1964, went critical 1965 and was shutdown 1969.
- A 7.4 MW_{th} thermal reactor with graphite moderator.
- The fuel, which also doubled as coolant, was LiF-BeF₂-ZrF₄-UF₄ (65-29-5-1).
- Two version of the fuel/coolant were used,
 - One with uranium enriched to 33% ²³⁵U,
 - In the other natural uranium was mixed wit a smaller amount ²³³U. The ²³³U was bred from thorium in another reactor.
- The MSRE successfully proved:
 - A liquid fuel works
 - A frozen plug can provide passive safety (more on that later).

DUAL FLUID REACTOR

General Description

• DFR concept combines features form MSRE, LFR, and VHTR.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.

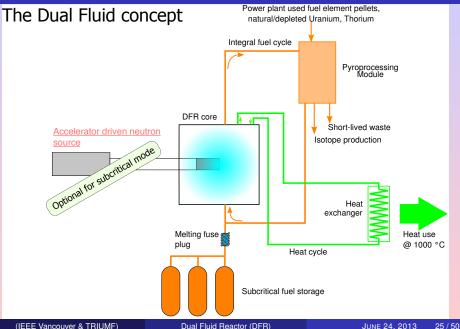
General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.

General Description


- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:
 - Molten salt for fuel, and

General Description

- DFR concept combines features form MSRE, LFR, and VHTR.
- All theses concepts are Generation IV concepts.
- MSRE ran successfully for about four years.
- Liquid lead cooling was used successfully in the Soviet Alfa class submarines.
- DFR, however, is a fast reactor operating at 1000°C and atmospheric pressure.
- DFR concept goes beyond Generation IV in using two separate fluids:
 - Molten salt for fuel, and
 - Liquid lead for coolant.

• The fuel will be processed on-line using the "pyroprocessing unit".

• The fuel will be processed on-line using the "pyroprocessing unit".

• Speed of fluid circulation will be optimized for maximum burn out.

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:
 - High mass halogens like UCl₃ and PuCl₃. With ³⁷Cl to avoid neutron Capture by ³⁵Cl and forming the long lived ³⁶Cl, or

- The fuel will be processed on-line using the "pyroprocessing unit".
- Speed of fluid circulation will be optimized for maximum burn out.
- Fuel must have melting point lower than the operating temperature, pumpable, low moderating power.
- Two options for fuel:
 - High mass halogens like UCl₃ and PuCl₃. With ³⁷Cl to avoid neutron Capture by ³⁵Cl and forming the long lived ³⁶Cl, or
 - Molten metallic fuel.

• ²³⁹Pu, ²³⁵U, natural U, natural Th, and fissionable actinides can be used in the fuel.

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and fissionable actinides can be used in the fuel.
- DFR can consume its own generated actinides or those in the waste of other reactors.

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and fissionable actinides can be used in the fuel.
- DFR can consume its own generated actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and fissionable actinides can be used in the fuel.
- DFR can consume its own generated actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:
 - ²³⁹Pu from ²³⁸U or

- ²³⁹Pu, ²³⁵U, natural U, natural Th, and fissionable actinides can be used in the fuel.
- DFR can consume its own generated actinides or those in the waste of other reactors.
- After the initial start up, depending on neutron economy and fuel mixture, DFR will produce its own fissile fuel:
 - ²³⁹Pu from ²³⁸U or
 - ²³³U from ²³²Th.

Coolant

• Liquid Lead

(IEEE Vancouver & TRIUMF)

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.
- A good reflector for fast neutron.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.
- A good reflector for fast neutron.
- Good heat transfer properties.

- Liquid Lead
- Melting point: 327°C, Boiling point: 1749°C.
- Very low fast neutron capture cross-section.
- Any radioactive isotopes formed will eventually decay back to stable lead.
- A good reflector for fast neutron.
- Good heat transfer properties.
- Circulation speed will be optimized for heat transfer.

Safety

• Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.

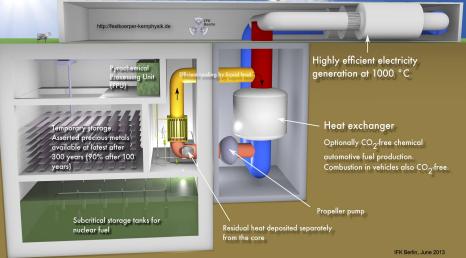
- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.

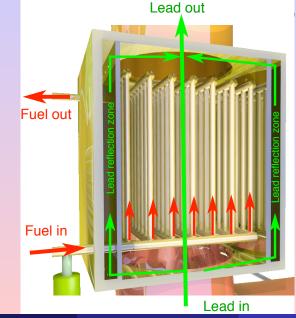
Safety


- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.
 - The decrease in liquid lead density reduces its neutron reflectivity.

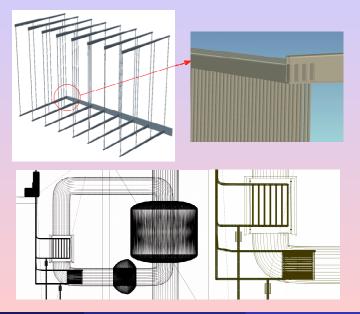
Safety

- Unchecked rise in core temperature due to Loss of coolant or any other reason, is the most serious problem in a reactor.
- DFR has a negative temperature coefficient.
- If the core temperature rises for any reason, the DFR has several inherent passive safety features:
 - The fuse plug will melt and drain the liquid fuel into the subcritical tanks.
 - The subcritical tanks will lose the residual heat by natural convection.
 - The decrease in fuel density decreases the concentration of fissile material in the fuel.
 - The decrease in liquid lead density reduces its neutron reflectivity.
 - Doppler broadening of resonances increases the neutron capture cross-section.

The Dual Fluid Reactor


www.dual-fluid-reactor.org

(IEEE Vancouver & TRIUMF)


Dual Fluid Reactor (DFR)

JUNE 24, 2013 30 / 50

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

Neutron Economy

• In U-Pu fuel cycle, Pu produces high neutron yield.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be acheived by consuming the neutron surplus outside the reactor core, or

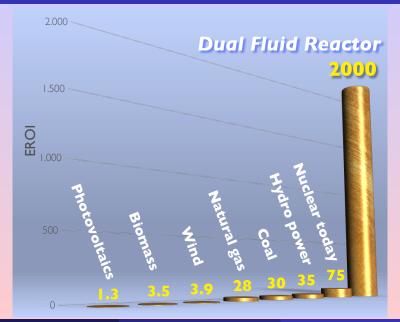
- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be acheived by consuming the neutron surplus outside the reactor core, or
- By injecting Th or an inert material in the fuel.

- In U-Pu fuel cycle, Pu produces high neutron yield.
- Large neutron surplus remains after U-Pu conversion, which in turn produces more Pu.
- Conversion rate is more than one (breeding mode).
- The neutron surplus can also be used to transmute the reactor's own fission products or those injected in from other reactors waste.
- Self-burning mode can be acheived by consuming the neutron surplus outside the reactor core, or
- By injecting Th or an inert material in the fuel.
- Th-U fuel cycle produces much less neutron yield than U-Pu cycle.

Reactors: DFR and water-moderated

DED.		Water-moderated
 DFR Consumes "waste" Consumes natural Uranium and natural Thorium Produces fuel for water-moderated reactors, if desired Produces CO₂-neutral chemical fuels Has a closed internal fuel cycle 	VS.	 Produces "waste" Consumes U-235 Can not produce chemical fuels Low power density, high costs Relies on fuel cycle infrastructure

Should not be an "either/or"


DFRs could be deployed on the site of water-moderated reactors, complementing their operation and closing their fuel cycle

(IEEE Vancouver & TRIUMF)

Dual Fluid Reactor (DFR)

En	ergy input of the I	DFR	
Item	Units or Total	Energy Inventory	Total Inventory
	(1000 kg)	(TJ/1000 kg)	(TJ)
Concrete containment for reactor,	21000	0.0014	30
fission products and turbine building			
High performance refractory metals	60	0.5	30
and ceramics (PPU and core)			
High temperature isolation material	100	0.1	10
for PPU and core			
Initial load, isotopically purified	25 + 60	2.5/0.4	50 + 25
37Cl + fuel			
Refractory metals and ceramics	180	0.5	90
for the heat exchanger			
Isolation and structural materials,	300	0.1	30
heat exchanger			
Unfabricated, low-alloyed metal	3000	0.033	100
for fission product encapsulation			
Structural materials (steel)	1000	0.02	20
for non-nuclear part			
Lead coolant	1200	0.036	45

Ene	ergy input of the [DFR	
Item	Units or Total	Energy Inventory	Total Inventory
	(1000 kg)	(TJ/1000 kg)	(TJ)
Turbines with generators	3	40	120
Mechanical engineering parts			150
Cooling tower (special concrete)	20000	0.003	60
Refueling, 1200 kg/a actinides	pprox 60	0.4	pprox 25
over 50 years			
37CI loss compensation	2	2.5	5
Maintenance, high-performance	30 + 50	0.5/0.1	20
refractories+ isolation for 1 new core			
Maintenance, 50% of other reactor	90 + 175	0.5/0.1	62.5
parts, refractories+ isolation			
Maintenance, 50% of mechanical			135
engineering and turbines			
Maintenance electricity, 2MW over			182.5
20 days/a and heating, 50*0.2 TJ			
Sum			1190
Output over 50 years lifetime,			2,250,000
pprox 1500 MW net, $pprox$ 8300 full-load hours			

(IEEE Vancouver & TRIUMF)

Estimated Construction Costs (Million US\$)

Item	500 MW _e DFR	1500 MW _e DFR
Concrete containment for reactor,		
earthquake-proof	100	130
Reactor with primary circuit, features		
including a facility for pyrochemistry	250	300
Secondary gas loop	60	150
Supercritical water turbine 500 MWe (3x),		
generator, transformer	250	580
Tertiary cooling system with		
cooling tower	140	250
Additional bunkers	100	200
Planning and building authority,		
contingency	130	200
Sum	1000	1800
Costs per installed power	2 US\$/W	1.2 US\$/W

Construction Costs

• The above costs are well below the 3.3 US\$/W_e for a modern nuclear power station like the third generation of the European Pressurized Water Reactor.

Construction Costs

- The above costs are well below the 3.3 US\$/W_e for a modern nuclear power station like the third generation of the European Pressurized Water Reactor.
- The above estimates use a more expensive external cooling system. A different choice could reduce the costs by 10%.

Operational Costs

		Estimated Annual DFR Operating Costs (million US\$)		
Item	500 MW _e	1500 MW _e		
Operating personnel: 30 man-years	4	5		
(3 shifts 10/12 man-years each 130,000 US\$)				
Operating supplies	1.5	2.5		
Nuclear fuel: 500 kg	0.5	1.5		
(330 US\$ mining, 330 US\$ transport,				
650 US\$ per kg waste management)				
Maintenance, conventional section	9.5	25		
(2.5% building costs per annum)				
Maintenance, nuclear and pyrochemical section	5	7		
(2% building costs per annum)				
Reserve for dismantling	5	9		
(25% of the building cost of 1000/1900 million US\$)				
Administration, safety	2.5	4		
Sum	26	54		

Electricity Costs

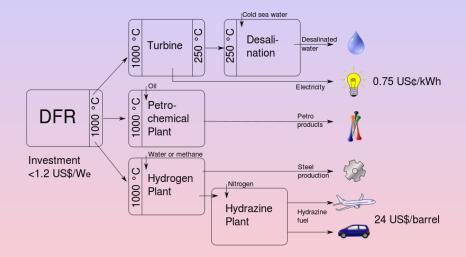
Estimated Total Costs OF Electricity Produced With DFR In US¢/kWh

Item	500 MW _e	1500 MW _e
Capital costs	0.50	0.30
Operating costs	0.65	0.45
Sum	1.15	0.75
DFR/PWR or Coal	0.30	0.20

Note1: PWR ≡ Pressurized Water Reactor, most commonly used reactor. Note2: Cost of electricity produced by Coal fired power stations are close to those produced by PWRs.

• Production of Electricity,

(IEEE Vancouver & TRIUMF)


- Production of Electricity,
- Water desalination,

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,
- Production of medical & industrial isotopes.

- Production of Electricity,
- Water desalination,
- Production of Synthetic Automotive Fuels for transportation,
- Production of medical & industrial isotopes.
- Many others.

DFR Applications

(IEEE Vancouver & TRIUMF)

• DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.
- DFR can then be used as a very low cost source of Hydrogen gas from water through combined electrolysis and thermal decomposition

- DFR operates at a very high temperature of 1000°C, which provides a very efficient use of heat.
- This combined with low construction and operational costs reduces the cost per unit heat.
- DFR can then be used as a very low cost source of Hydrogen gas from water through combined electrolysis and thermal decomposition
- This cheap Hydrogen makes the production of Nitrogen and Silicon based synthetic automotive fuels economically viable.

• The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.

- The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.
- In addition some automotive fuels can be synthesized from other sources like biomass, corn, natural gas, etc.

- The most commonly used automotive fuels are Gasoline, Diesel, Natural Gas and Liquified Petroleum Gas. All these fuels (except Natural Gas) are extracts from crude oil.
- In addition some automotive fuels can be synthesized from other sources like biomass, corn, natural gas, etc.
- All these fuels are "organic fuels", based on carbon and hydrogen. As a result, they all produce Carbon Dioxide as they burn.

Economics

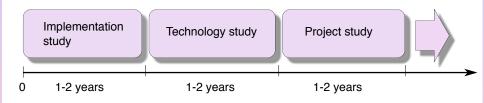
Synthetic Automotive Fuels

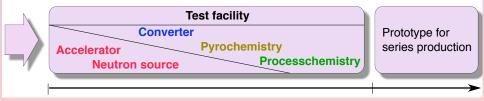
• There are other synthesized fuels that are **not** based on Carbon. Examples are **Hydrazine** and **Silane**

- There are other synthesized fuels that are **not** based on Carbon. Examples are **Hydrazine** and **Silane**
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen

- There are other synthesized fuels that are **not** based on Carbon. Examples are **Hydrazine** and **Silane**
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.

- There are other synthesized fuels that are **not** based on Carbon. Examples are **Hydrazine** and **Silane**
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.
- It can be used in automotive combustion engines with proper additives, resulting in Water Vapour and Nitrogen as waste.


- There are other synthesized fuels that are **not** based on Carbon. Examples are **Hydrazine** and **Silane**
- Hydrazine is made of Nitrogen and Hydrogen while Silane is made of Silicon and Hydrogen
- Hydrazine has been used as rocket fuel in NASA's space program.
- It can be used in automotive combustion engines with proper additives, resulting in Water Vapour and Nitrogen as waste.
- Similarly, Silane burns to Water Vapour and Silicon Nitride, an inert compound.


• In addition, Hydrazine and Silane have a wide range of industrial applications.

- In addition, Hydrazine and Silane have a wide range of industrial applications.
- The hazardous properties and toxicity of these fuels are similar to Gasoline.

Estimated timeline

• Phase I will last for 2-3 years.

- Phase I will last for 2-3 years.
- Requires \approx \$2.25-3.00 million of investment. This money will be used for personnel and equipment:

- Phase I will last for 2-3 years.
- Requires \approx \$2.25-3.00 million of investment. This money will be used for personnel and equipment:
 - Computer hardware, software, and/or computing time @ \approx \$50,000.

- Phase I will last for 2-3 years.
- Requires \approx \$2.25-3.00 million of investment. This money will be used for personnel and equipment:
 - Computer hardware, software, and/or computing time @ \approx \$50,000.
 - About 6 scientists and engineers for design and simulation work
 @ ≈ \$1.2 million, includes salaries and benefits, conference travel and miscellaneous.

- Phase I will last for 2-3 years.
- Requires \approx \$2.25-3.00 million of investment. This money will be used for personnel and equipment:
 - Computer hardware, software, and/or computing time @ \approx \$50,000.
 - About 6 scientists and engineers for design and simulation work
 @ ≈ \$1.2 million, includes salaries and benefits, conference travel and miscellaneous.
 - 1.5 scientists for experimental work on material testing and pyroprocessing component testing @ ≈ \$1.2 million, includes salaries and benefits, equipment and laboratory space rental.

• Canadian Center for Nuclear Innovation (CCNI), Saskatchewan.

- Canadian Center for Nuclear Innovation (CCNI), Saskatchewan.
- Government of Dubai, United Arab Emirates.

- Canadian Center for Nuclear Innovation (CCNI), Saskatchewan.
- Government of Dubai, United Arab Emirates.
- Government of Egypt: Ministry of Higher Education and Nuclear Power Plant Authority.

- Canadian Center for Nuclear Innovation (CCNI), Saskatchewan.
- Government of Dubai, United Arab Emirates.
- Government of Egypt: Ministry of Higher Education and Nuclear Power Plant Authority.
- European Commission for Energy, Euratom, and Sustainable Nuclear Energy Technology Platform.

- Canadian Center for Nuclear Innovation (CCNI), Saskatchewan.
- Government of Dubai, United Arab Emirates.
- Government of Egypt: Ministry of Higher Education and Nuclear Power Plant Authority.
- European Commission for Energy, Euratom, and Sustainable Nuclear Energy Technology Platform.
- TRIUMF????