

What is Materials Science?

The study of the properties of "condensed matter" – usually SOLIDS

Why is it Interesting?

(almost) All Technology uses SOLIDS

The Atomic Structure of Matter

Matter is made of ATOMS

ATOMS are made of: a cloud of negative **electrons** swirling around a small, heavy positive **NUCLEUS**

The **NUCLEUS** is really tiny and is made of positive **PROTONS** and uncharged **NEUTRONS**.

What is Radioactivity?

When a **NUCLEUS** has too many **PROTONS** and/or **NEUTRONS**, it is unstable and tends to fall apart.

Most matter we encounter is not radioactive.

Some types of Radiation

Alpha – heavy, positive charged, He⁺⁺ Beta – light, high energy electrons Gamma – very high energy photons of light

Nuclear Reactions Produce Heavy Elements Including Radioactive ones

Some very nearly stable radioactive elements are still found in the earth (billions of years after the reactions that produced them)

ZnS diffraction pattern Max von Laue Nobel (1914)

More Diffraction Patterns from Crystals

Radiotracers

The idea: high energy radiation is *easy to detect*

use radioactive tracer atoms to George de Hevesy study: Nobel 1943 physical, chemical and biological processes

Diffusion	Process	ses in Crystals
0 0 0	0 0	0 0 0 0 0
$\bigcirc \rightarrow \bigcirc 3$ \bigcirc	0 0	
$\bigcirc \bigcirc \bigcirc^{1} \bigcirc^{2} \longrightarrow 1$	0 0	$\vec{0}$
0 0 0	0 0	0.0000
0 0 0	0 0	0 0 0 0 0
Vacanc	cy	Interstital
000	0 0	0 0 0 0 0
000	0 0	00000
000	00	00000
000	0 0	00000
Atomic Ex	change	Cyclic Exchange

xrays and neutrons are characterized by a **WAVELENGTH** radiotracers are characterized by their atomic **POSITION** yield very different types of information

Nuclear Magnetism

The Production of Short-Lived Radioactive Particles

Other beta decay probes

sotope	Spin	$\boldsymbol{\tau}_{1/2}$	γ (MHz/T)		Estimated Rate (s ⁻¹)
⁸ Li	2	0.8	6.3	0.33	10 ⁸
¹¹ Be	1/2	13.8	22	~0.3	107
¹⁵ O	1/2	122	10.8	0.66	108
¹⁹ O	5/2	26.9	4.6	0.71	108
¹⁷ Ne	1/2	0.1		0.33	106

Materials Science is interesting!

Radioactivity provides may useful ways to study materials

Many nulcei are mini-Magnets

Nuclear magnets can say a lot about their local environment

In very small numbers, radioactive nuclear magnets can say a lot about their local environment, e.g. in thin films

bnmr.triumf.ca

No – Not Biology! well if you must ...

Acknowledgments

R.F. Kiefl, J.H. Brewer, E.P. Reynard, T.R. Beals, K.M. Nichol, T. Keeler,
M.D. Hossain, W. Dong, H. Saadaoui, A. Morello, M. Smadella, J. Schultz (UBC Physics)
T.J. Parolin, Q. Song, J. Shi, J. Valiani (UBC Chemistry)
Z. Salman^{*}, G.D. Morris, R.I. Miller (TRIUMF), Z. Yamani (Chalk River)
K.H. Chow (Alberta, Physics)
S.R. Dunsiger (McMaster), R.H. Heffner (LANL)
<u>SAMPLES:</u>
L.H. Greene (Urbana), T. Hibma, S. Hak (Groningen), B. Heinrich (SFU),
Y. Maeno (Kyoto), J. Buriak (Alberta) P. Fournier (Sherbrooke), J. Wei (Toronto), J.W. Brill (Kentucky), J. Chakhalian (MPI-Stuttgart, Arkansas),
G. Condorelli, R. Sessoli (Florence), A. Mar, A.V. Tkaczuk (Alberta)
<u>At TRIUMF</u>:
Polarizer: C.D.P. Levy, M. Pearson, A. Hatakeyama (Tokyo)
PAQ: S. Daviel, R. Poutissou, D. Arseneau
Beam Transport: R. Baartman, M. Olivo
F. S.R. Kreitzman

G.D. Wight, C. Bommas (Bonn)