Summer Student Seminar Wed. May 24, 2006, 9:30 a.m.

Laser Traps for Beta Decay Experiments

John Behr, TRIUMF

TRIUMF's neutral atom trap captures radioactive atoms in a 1 mm-sized cloud in a vacuum chamber. The atomic nuclei undergo beta decay, which produces three decay products: a β , a ν , and the daughter recoiling nucleus. The daughter nucleus has very little energy and would stop in a nanometer of material, but it freely escapes the trap. By measuring its momentum in coincidence with the β , the ν direction with respect to the β can be deduced more directly than in previous experiments.

As far as we know, the Standard Model weak interaction is mediated by "heavy light", "vector" bosons with spin 1 which are heavy partners of the photon. We see a β - ν correlation consistent with the Standard Model, and constrain the existence of other exchange bosons with spin 0. We also spin-polarize the nuclei with circularly polarized light, to test whether parity is fully violated in the weak interaction. We will wave our hands about a possible search for keV-mass ν 's.

The mathematical proof that these traps cannot work will be presented, along with its experimental dodges. No laser pointers will be harmed during this presentation. If you can't read the t-shirt, you're sitting too far away.

Laser Traps for Beta Decay Experiments

I. Laser Cooling and Trapping
Why Laser traps Can't Work

II. Demonstrated Capabilities:

 β^+ -recoil coincidence $\Rightarrow \nu$ momentum Best Limits on scalar interactions Search for keV-mass ν_x ?

III. Promise: high known polarization:

How to polarize a nucleus with a laser Search for right-handed ν 's: need P > 99%

TRIUMF Neutral-Atom Trapping "TRINAT"

Simon Fraser U.	<u>TRIUMF</u>	Tel Aviv	Undergrad
**A.Gorelov	J.A.Behr	D Ashery	A. Gaudin
	M.R.Pearson	Budapest	U. Prince Edw Isl
	K.P.Jackson	F.Glück	
	M. Dombsky	U.West.Ontario	
	P. Bricault	W.P.Alford	
U.British Columbia	*C.Höhr		<u>U. Manitoba</u>
** R. Pitcairn			G. Gwinner
** D. Roberge			
			Stony Brook?
			G.Sprouse (Fr?)
**Grad Students			Maryland?
*Res. Assoc.			L.Orozco (Fr?)

Supported by Canadian NSERC, Canadian NRC through TRIUMF, WestGrid, Israeli Science Foundation

Laser Cooling

Radiation Pressure:

$$oldsymbol{\Delta} ec{\mathbf{p}} = \hbar \; ec{\mathbf{k}}_{oldsymbol{\gamma}} \qquad ec{\mathbf{F}} = rac{\mathrm{d} ec{\mathbf{p}}}{\mathrm{dt}} = (\hbar \; ec{\mathbf{k}}_{oldsymbol{\gamma}}) \; ext{(scattering rate)}$$

Equal intensity plane waves, redshifted, 1-D

$$\mathbf{F} = rac{\hbar \vec{\mathbf{k}}_{\gamma}(\Gamma/2 \ I/I_0)}{1+4(rac{\delta-\mathbf{k}\mathbf{v}}{\Gamma})^2} - rac{\hbar \vec{\mathbf{k}}_{\gamma}(\Gamma/2 \ I/I_0)}{1+4(rac{\delta+\mathbf{k}\mathbf{v}}{\Gamma})^2}$$

- slows efficiently for $v < v_{capture}$
- 10⁴ photons to slow room T
- no spatial dependence (yet)

'Optical molasses'

"Why Optical Traps Can't Work"

Earnshaw Theorem:

$$ec{
abla} \cdot ec{E} = 0$$

⇒ no electrostatic potential minimum for charge-free region

"Optical Earnshaw Theorem" (Ashkin + Gordon 1983):

Using Poynting's theorem:

$$\vec{\nabla} \cdot \vec{S} = \frac{c}{4\pi} \vec{\nabla} \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial u}{\partial t} = 0$$

⇒ no 3-D traps from spontaneous light forces with static light fields

Dodges!

- Dipole Force traps ("optical tweezers")
- Modify internal structure of atom with external fields

"Why Optical Traps Can't Work"

Earnshaw Theorem:

$$ec{
abla} \cdot ec{E} = 0$$

⇒ no electrostatic potential minimum for charge-free region

"Optical Earnshaw Theorem" (Ashkin + Gordon 1983):

Using Poynting's theorem:

$$\vec{\nabla} \cdot \vec{S} = \frac{c}{4\pi} \vec{\nabla} \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial u}{\partial t} = 0$$

⇒ no 3-D traps from spontaneous light forces with static light fields

Dodges!

- Dipole Force traps ("optical tweezers")
- Modify internal structure of atom with external fields

"Why Optical Traps Can't Work"

Earnshaw Theorem:

$$\vec{\nabla} \cdot \vec{E} = 0$$

 \Rightarrow no electrostatic potential minimum for charge-free region

"Optical Earnshaw Theorem" (Ashkin + Gordon 1983):

Using Poynting's theorem:

$$\vec{\nabla} \cdot \vec{S} = \frac{c}{4\pi} \vec{\nabla} \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial u}{\partial t} = 0$$

 \Rightarrow no 3-D traps from spontaneous light forces with static light fields

Dodges!

- Dipole Force traps ("optical tweezers")
- Modify internal structure of atom with external fields

Bquad weak: recoils unperturebed

Velocities negligible

Vector polarization ~ 0 (Tensor alignment maybe)

Turn MOT off to polarize

3000 atoms $^{38\text{m}}\text{K}$ $t_{1/2} = 1 \text{ sec}$ laser power changes cloud size

bad ν s

What elements can be laser-cooled/trapped?

Need quasi-closed E1 transition ($J_e = J_g + 1$, $\pi_e = -\pi_g$)

What elements can be laser-cooled/trapped?

Need quasi-closed E1 transition (J_e = J_g+1, π_e = $-\pi_g$)

Electroweak Interactions: what we "know"

• E&M unified with Weak interactions $\gamma \iff \mathbf{Z}^0, \mathbf{W}^+, \mathbf{W}^-$

- 1) Only spin-1 "vector" exchange bosons
- 2) Only left-handed ν 's: "parity is maximally violated" "V-A"
 - What we can test:
- 1) Are there spin-0 <u>Scalar</u> Bosons?

$$ext{I}^{\pi} = 0^{+} \! o \! 0^{+} \; eta^{+} \! \! \cdot \!
u \; \sigma \! \! \sim \! 0.5\% ext{ is useful}$$

2) Right-handed ν 's ? "V+A"?

Polarized observables with $\sigma \approx 0.1\%$ needed.

Vector and Scalar bosons and the β - ν angular distribution

For
$$^{38\text{m}}\text{K}$$
, $0^+ \rightarrow 0^+$ decay:

$$W[heta_{eta
u}]=1\ +\ brac{m}{E}\ +\ a\ rac{v_eta}{c}\cos heta_{eta
u}$$
a $=+1$

For scalar exchange, lepton helicities are same: a=-1

EXPERIMENTAL BEAMLINES AND FACILITIES TRIUMF ≶ MAGNETS **PROTON** CLEAN AREA EXT. KICKER HV TEST AREA TITAN REN Ш ISAC TEST STAND DTL DTL PARITY 7 BL4B W/PM W **MRS** BL4A (p) PROTON ELEVATOR ION SOURCES UPPER LEVEL REMOTE HANDLING FACILITY MAIN CONTROL ROOM SERVICE BRIDGE **CYCLOTRON** TARGET HALL MEBT DIL TO ISAC II POLARIMETE POLARIZER BL1(p) BL1A (p) ION SOURCES OPTICALLY PUMPED POLARIZED ION SOURCE BL2A(p) 田田 BL2C (p) PROTON M13 (\(\pi/\mu\)) THERAPY M13 (\(\pi/\mu\)) FAC. BL1B(p) ISAC DISPLAY M15(μ) MESON HALL ISAC - I M11(π) 11 12 MATERIAL SCIENCE μSR β NMR M9 (π/μ) **N**20(μ) ELEVATOR CHEMISTRY ANNEX -M8 (π) 500 MeV ISOTOPE PRODUCTION FACILITY MESON HALL LAB SERVICE ANNEX BABAR ATLAS MESON ZI H TR 30-2 ISOTOPE PRODUCTION CYCLOTRON PRODUCTION CYCLOTRON TR 13 ISOTOPE **HANDLING** REMOTE TR 30-1 ISOTOPE PRODUCTION CYCLOTRON CP 42 ISOTOPE CYCLOTRON **PRODUCTION**

TRIUMF's Neutral Atom Trap

- Isotope/Isomer selective
- ullet Evade 1000x untrapped atom background by ightarrow 2nd MOT
- 75% transfer (must avoid backgrounds!)
- 0.7 mm cloud for β -Ar⁺ $\rightarrow \nu$ momentum $\rightarrow \beta$ - ν correlatio
- >97% polarized, known atomically

 $^{38\mathrm{m}}\mathrm{K}~0^{+}{\rightarrow}0^{+}$ β - ν correlation

Recoil TOF[T_{β}], C.L. of total fit 52%

Gorelov PRL Apr 2005 $\tilde{a}{=}0.9981 \pm 0.0030 ({
m stat}) \pm 0.0037 ({
m syst})$

Best general constraints on scalars coupling to 1st generation Upgrade approved: Goal 3x better

$$ilde{a}{=}a/(1+bm_{eta}/\langle E_{eta}
angle)$$

Complementary to $\pi \rightarrow e\nu$ (B. Campbell et al. NPB 709 419 (2005)) (Adelberger 32 Ar β -delayed proton emission PRL 1999 \tilde{a} =0.9989 \pm 0.0052 \pm 0.0039 still under re-analysis)

New: Geometry with e⁻ detector

For E1070:

- High-statistics
- free of β bias

Also with higher statistics:

⁸⁰Rb tensor search by recoil singles: Lots of data Dec 05

 $^{37}{
m K}$ A_{recoil} gives Fermi/GT interference, right-handed currents; A_{eta}

³⁶K isospin mixing becomes practical: A_{recoil} , A_{β}

⁷⁴Rb Q-value

keV sterile
$$u$$
's $|
u_e
angle = \cos\! heta \, |
u_{
m m=0}
angle + \sin\! heta \, |
u_x
angle$

- dark matter, pulsar kicks... Dodelson PRL 1994 Biermann PRL 2006
- Admixture $\sim 10^{-8}$ Abazajian PRD 2005 'like rare K decay' \rightarrow Need \sim zero background
- 10^{-5} admixture conceivable at 20 keV ('do you care?'):

$$^{131}{
m Cs} + {
m e}^-
ightarrow
u + ^{131}{
m Xe} \qquad {
m (or} \ ^{82}{
m Sr} \ {
m or} \ ^{7}{
m Be}) \ {
m p'} pprox {
m p} \ (1 - m_{\nu x}^2/2Q^2) \Rightarrow \delta {
m p/p} \ {\sim} 0.001$$

Must measure momenta of all shakeoff e⁻'s to 10% and K X-ray direction

Laser Traps for Beta Decay Experiments

[Refs.: Nobel Prize Lectures: Rev. Mod. Phys. $\underline{70}$ Jul 1998; and J.A.B. NIM $\mathbf{B204}$ 526 (2003)]

- MOT provides a localized, backing-free source ideal for β^+ -recoil coincidence studies
- Neutral atom trap technology provides (?) highly polarized nuclei with known polarization

