Summer Student Seminar
Wed. May 24, 2006, 9:30 a.m.

Laser Traps for Beta Decay Experiments

John Behr, TRIUMF

TRIUMF’s neutral atom trap captures radioactive atoms in a 1 mm-sized cloud in a vacuum chamber. The atomic nuclei undergo beta decay, which produces three decay products: a β, a ν, and the daughter recoiling nucleus. The daughter nucleus has very little energy and would stop in a nanometer of material, but it freely escapes the trap. By measuring its momentum in coincidence with the β, the ν direction with respect to the β can be deduced more directly than in previous experiments.

As far as we know, the Standard Model weak interaction is mediated by “heavy light”, “vector” bosons with spin 1 which are heavy partners of the photon. We see a β-ν correlation consistent with the Standard Model, and constrain the existence of other exchange bosons with spin 0. We also spin-polarize the nuclei with circularly polarized light, to test whether parity is fully violated in the weak interaction. We will wave our hands about a possible search for keV-mass ν’s.

The mathematical proof that these traps cannot work will be presented, along with its experimental dodges. No laser pointers will be harmed during this presentation. If you can’t read the t-shirt, you’re sitting too far away.
I. Laser Cooling and Trapping
 Why Laser traps Can’t Work

II. Demonstrated Capabilities:
 β^+–recoil coincidence $\Rightarrow \nu$ momentum
 Best Limits on scalar interactions
 Search for keV-mass ν_x?

III. Promise: high known polarization:
 How to polarize a nucleus with a laser
 Search for right-handed ν’s: need $P > 99\%$
TRIUMF Neutral-Atom Trapping “TRINAT”

<table>
<thead>
<tr>
<th>Simon Fraser U.</th>
<th>TRIUMF</th>
<th>Tel Aviv</th>
<th>Undergrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gorelov</td>
<td>J.A. Behr</td>
<td>D. Ashery</td>
<td>A. Gaudin</td>
</tr>
<tr>
<td>M.R. Pearson</td>
<td>Budapest</td>
<td>F. Glück</td>
<td>U. Prince Edw Isl</td>
</tr>
<tr>
<td>K.P. Jackson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Dombsky</td>
<td>U.West. Ontario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Bricault</td>
<td>W.P. Alford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*C. Höhr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U. British Columbia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Pitcairn</td>
<td></td>
</tr>
<tr>
<td>D. Roberge</td>
<td></td>
</tr>
</tbody>
</table>

| Supported by Canadian NSERC, Canadian NRC through TRIUMF, WestGrid, Israeli Science Foundation |

<table>
<thead>
<tr>
<th>Grad Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stony Brook?</td>
</tr>
<tr>
<td>G. Sprouse (Fr?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Res. Assoc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland?</td>
</tr>
<tr>
<td>L. Orozco (Fr?)</td>
</tr>
</tbody>
</table>
Laser Cooling

Radiation Pressure:

\[\Delta \vec{p} = \hbar \vec{k}_\gamma \]
\[\vec{F} = \frac{d\vec{p}}{dt} = (\hbar \vec{k}_\gamma) \] (scattering rate)

Equal intensity plane waves, redshifted, 1-D

\[F = \frac{\hbar k_\gamma (\Gamma/2 I/I_0)}{1+4(\frac{\delta-kv}{\Gamma})^2} - \frac{\hbar k_\gamma (\Gamma/2 I/I_0)}{1+4(\frac{\delta+kv}{\Gamma})^2} \]

\[\delta = k v \]
\[\delta = -k v \]

\[F_{\text{SUM}} \]

- slows efficiently for \(v < v_{\text{capture}} \)
- \(10^4 \) photons to slow room \(T \)
- no spatial dependence (yet)
‘Optical molasses’
“Why Optical Traps Can’t Work”

Earnshaw Theorem:

\[\nabla \cdot \vec{E} = 0 \]

\[\Rightarrow \text{no electrostatic potential minimum for charge-free region} \]

“Optical Earnshaw Theorem” (Ashkin + Gordon 1983):

Using Poynting’s theorem:

\[\nabla \cdot \vec{S} = \frac{c}{4\pi} \nabla \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial u}{\partial t} = 0 \]

\[\Rightarrow \text{no 3-D traps from spontaneous light forces with static light fields} \]

Dodges!

- Dipole Force traps (“optical tweezers”)
- Modify internal structure of atom with external fields
“Why Optical Traps Can’t Work”

Earnshaw Theorem:

\[\nabla \cdot \vec{E} = 0 \]
\[\Rightarrow \text{no electrostatic potential minimum for charge-free region} \]

“Optical Earnshaw Theorem” (Ashkin + Gordon 1983):

Using Poynting’s theorem:

\[\nabla \cdot \vec{S} = \frac{c}{4\pi} \nabla \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial u}{\partial t} = 0 \]

\[\Rightarrow \text{no 3-D traps from spontaneous light forces with static light fields} \]

Dodges!

- Dipole Force traps (“optical tweezers”)
- Modify internal structure of atom with external fields
“Why Optical Traps Can’t Work”

Earnshaw Theorem:

\[\nabla \cdot \vec{E} = 0 \]

⇒ no electrostatic potential minimum for charge-free region

“Optical Earnshaw Theorem” (Ashkin + Gordon 1983):

Using Poynting’s theorem:

\[\nabla \cdot \vec{S} = \frac{c}{4\pi} \nabla \cdot (\vec{E} \times \vec{B}) = -\vec{J} \cdot \vec{E} - \frac{\partial \vec{u}}{\partial t} = 0 \]

⇒ no 3-D traps from spontaneous light forces with static light fields

Dodges!

- Dipole Force traps (“optical tweezers”)
- Modify internal structure of atom with external fields
Zeeman Optical Trap (MOT)

Raab et al. PRL 59 2631 (1987)

Damped harmonic oscillator

\[\varepsilon = \mathbf{s} \cdot \mathbf{k} \]
Zeeman Optical Trap (MOT)

Raab et al. PRL 59 2631 (1987)

Damped harmonic oscillator

\[\varepsilon = \hat{S} \cdot \hat{k} \]

Bquad weak: recoils unperturbed

Velocities negligible

Vector polarization \(\sim 0 \)

(Tensor alignment maybe)

Turn MOT off to polarize

\[J=0 \]

\[m=-1 \quad 0 \quad 1 \]

\[\sigma^- \quad \sigma^+ \]

\[J=1 \]

\[m=-1 \quad 0 \quad 1 \]

\[\sigma^- \quad \sigma^+ \]
3000 atoms 38mK $t_{1/2} = 1$ sec
laser power changes cloud size

not enough

too much atoms heat up

stop!

1 mm just right

no ν s = bad ν s
What elements can be laser-cooled/trapped?

Need quasi-closed E1 transition ($J_e = J_g + 1$, $\pi_e = -\pi_g$)

Here Be Dragons

Trapped in MOT Radioactives trapped Long-lived Rad. Plans
What elements can be laser-cooled/trapped?

Need quasi-closed E1 transition ($J_e = J_g + 1$, $\pi_e = -\pi_g$)

Trapped in MOT ☐ Radioactives trapped ☐ Long-lived Rad. ☐ Plans
Electroweak Interactions: what we “know”

- E&M unified with Weak interactions
 \[\gamma \leftrightarrow Z^0, W^+, W^- \]

1) Only spin-1 “vector” exchange bosons
2) Only left-handed \(\nu \)'s: “parity is maximally violated” “V-A”

- What we can test:
 1) Are there spin-0 **Scalar** Bosons ?
 \[I^\pi = 0^+ \rightarrow 0^+ \beta^+ - \nu \sigma \approx 0.5\% \text{ is useful} \]
 2) Right-handed \(\nu \)'s ? “V+A”?
 Polarized observables with \(\sigma \approx 0.1\% \) needed.
Vector and Scalar bosons and the β-ν angular distribution

For 38mK, $0^+ \rightarrow 0^+$ decay:

$$W[\theta_{\beta\nu}] = 1 + b \frac{m}{E} + a \frac{v_{\beta}}{c} \cos \theta_{\beta\nu}$$

$a = +1$

For scalar exchange, lepton helicities are same: $a = -1$
TRIUMF’s Neutral Atom Trap
- Isotope/Isomer selective
- Evade 1000x untrapped atom background by → 2nd MOT
- 75% transfer (must avoid backgrounds!)
- 0.7 mm cloud for β-Ar$^+$ → ν momentum → β-ν correlation
- >97% polarized, known atomically
$^{38\text{m}}\text{K}$ $0^+ \rightarrow 0^+$
$\beta-\nu$ correlation

Recoil TOF$[T_\beta]$, C.L. of total fit 52%

Gorelov PRL Apr 2005
$\tilde{a}=0.9981 \pm 0.0030\text{(stat)} \pm 0.0037\text{(syst)}$
Best general constraints on scalars coupling to 1st generation
Upgrade approved: Goal 3x better
$\tilde{a}=a/(1 + bm_\beta/\langle E_\beta \rangle)$

Complementary to $\pi \rightarrow e\nu$ (B. Campbell et al. NPB 709 419 (2005))
(Adelberger ^{32}Ar β-delayed proton emission PRL 1999
$\tilde{a}=0.9989 \pm 0.0052 \pm 0.0039$ still under re-analysis)
$\cos[\theta_{\beta\nu}]$ From Other Observables

$\chi^2/(N-3) = 0.69$

agrees with other analysis
New: Geometry with e^- detector

For E1070:

- High-statistics
- free of β bias
- expect collection for all e^-’s < 100 eV

Also with higher statistics:

80Rb tensor search by recoil singles: Lots of data Dec 05

37K A_{recoil} gives Fermi/GT interference, right-handed currents; A_β

36K isospin mixing becomes practical: A_{recoil}, A_β

74Rb Q-value
keV sterile ν's \[|\nu_e\rangle = \cos\theta \, |\nu_{m=0}\rangle + \sin\theta \, |\nu_x\rangle \]

- dark matter, pulsar kicks... Dodelson PRL 1994 Biermann PRL 2006
- Admixture $\sim 10^{-8}$ Abazajian PRD 2005
 ‘like rare K decay’ \rightarrow Need \simzero background

- 10^{-5} admixture conceivable at 20 keV (‘do you care?’):

Electron Capture

$^{131}\text{Cs} + e^- \rightarrow \nu + ^{131}\text{Xe}$ \hspace{1cm} (or ^{82}Sr or ^7Be)

$p' \approx p \left(1 - m_{\nu_x}^2/2Q^2\right) \Rightarrow \delta p/p \sim 0.001$

Must measure momenta of all shakeoff e$^-$’s to 10% and K X-ray direction
Gelmini PRL 93 80312 (2004) "low reheating" T<<100 MeV
Projected:
- 131Cs EC
- 82Sr EC
- ‘1 week counting’

Boyarsky
astro-ph/512509
plots
$\Omega_s \sin^2 2\theta$
Laser Traps for Beta Decay Experiments

[Refs.: Nobel Prize Lectures: Rev. Mod. Phys. 70 Jul 1998; and J.A.B. NIMB204 526 (2003)]

- MOT provides a localized, backing-free source ideal for β^+-recoil coincidence studies
- Neutral atom trap technology provides (?) highly polarized nuclei with known polarization