

Cancer Therapy using Proton Beams

Ewart Blackmore, TRIUMF

Topics

- Cancer treatment quick summary
- Radiotherapy electron, X-ray, proton
- How protons behave in matter?
- Why protons are good for cancer treatment?
- TRIUMF treatment of eye cancer
- Proton therapy around the world
- Commercial from Hitachi

18,000 new cases each year in BC

- 1. Surgery to remove the tumour
- 2. Chemotherapy to kill the tumour with drugs
- 3. Radiotherapy to kill the tumour with radiation External beam therapy – X-rays, gamma rays, protons Internal therapy – brachiotherapy (radioactive isotopes)

Success: Tumour control vs. complications Destroy/remove tumour without damaging healthy or normal tissue nearby

Energy Scale – electron Volts

kilo (keV) = thousand, mega (MeV) = million

Televison ~ 20 keV

What is a Photon (X-ray), Electron & Proton?

Photon

- quantum or packet of EM energy
- visible light (low E)
- X-ray ~ keV to MeV (atomic transition)
- gamma ray ~ MeV (nuclear decay)

Electron

- negatively charged light particle
- found in all atoms
- easily produced beams
- used to make X-rays

Proton

- much heavier than the electron x 1840
- nucleus of the hydrogen atom
- positively charged
- protons and neutrons make up all nuclei

Conventional Radiotherapy

Electron linac producing X-ray beam – 7500 units worldwide

Excellent for most cases of cancer

Cobalt Therapy Unit Co-60 produces a gamma ray beam

Invented by Dr. Harold Johns – Canadian 1915-1998

Connection to AECL (MDS-Nordion)

3000 in use worldwide (most made in Canada)

BC Cancer Agency 600 West 10th Avenue Vancouver, BC Canada V5Z 4E6

TRIUMF Cyclotron

Protons in Matter – Some Basic Concepts

- protons have a well defined range in matter
 eg. 200 MeV proton, range 25 cm
- protons lose energy by ionizing electrons – more loss as they slow down (Bragg curve)
- protons stopping in living tissue produce damage to DNA causing cells to die.

A monenergetic proton beam stopping in matter produces a rapid increase in dose near the end of its range.

This dose can be spread out over a desired depth by modulating the energy of the proton beam – SOBP Spread Out Bragg Peak

Success of radiation therapy comes from delivering maximum dose to the tumour and minimizing dose to nearby sensitive structures.

Comparison of Treatment Planning using Protons vs. X-rays

Highest dose - red

Lowest dose - yellow

X-rays

Protons

BCCA/UBC/TRIUMF Collaboration on Proton Therapy

BC Cancer Agency

600 West 10th Avenue Vancouver, BC Canada V5Z 4E6

BC Cancer Agency

Dr. Tom Pickles, Oncologist Dr. Roy Ma, Oncologist Dr. William Kwa. Medical Physicist Dr. Richard Lee, Medical Physicist

UBC Department of Ophthalmology & Eye Care Centre

Dr. Katherine Paton, Ophthalmologist Dr. Jack Rootman, Ophthalmologist

TRIUMF

Dr. Ewart Blackmore, Physicist

Patients referred from Western Canada Population base of ~ 10 million Both Proton & ¹⁹⁸ Au Plaque Therapy

Cyclotron and Beam Line

- $E_{max} = 500 \text{ MeV}$
- I $\,\sim\,120\text{-}150~\mu\text{A}$
- Variable Energy Extraction by H⁻ stripping
- Use of Pepperpot $\div 40$ intensity
- "Patient Mode"
- Treatment parameters BL2C 74 MeV 6 nA
- Delivers 12.5 Gy in 100 sec.

Layout of Eye Treatment Equipment

Diagram of the Eye

Ocular Melanoma – Uveal or Choroidal Melanoma

Frequency: 5-6 cases/year per million population

Treatment protocols: Radioactive plaque therapy Charged particle radiotherapy Enucleation

Uveal Melanoma before proton beam treatment

Uveal Melanoma after proton beam treatment

Treatment Planning for Ocular Melanoma

Patient in Treatment Position

Treatment Chair 6 motorized motions X, Y, Z, K, θ, Φ

Xrays viewed with Polaroid/Lanex Screen

Proton Beam Line Equipment

Modulator and Patient Collimator

Modulators: 10 mm to 25 mm in 1 mm increments Brass collimators, Aluminum wedges

Beam Dosimetry

<image>

Monitor Chamber with T1 calibration chamber in plastic holder 3D scanning table for dosimetry in a water box

Beam Profiles – Depth/Transverse

Markus data, comparison of raw Bragg peak, 15 mm and 23 mm cal wheels SOBP, 2.0 cm coll.

TRIUMF Proton Patient & Tumor Statistics

Total Patients: 10499 choroidal or uveal melanoma, 3 iris,
2 hemangioma (benign)

Ages: 14 – 80, Median 57

Tumour Control - >95% Vision improvement/loss : depends on tumour location and size Complications – 10% neovascular glaucoma (may require enucleation) Survival rate (> 5 years) 80%

World Wide Charged Particle Patient Totals January 2004

Who	Where	What	Date First RX	Recent Patient Total	Comments
North America				10001	
Harvard	MA, USA	р	1961	9116	160 MeV synchrocycl.– many pt tech. developed
NPTC, MGH	MA, USA	P	2001	607	hospital based -230 MeV cycl. + gantries
Loma Linda	CA, USA	р	1990	8626	hospital based – 250 MeV synch +gantries
UCSF – CNL	CA, USA	p	1994	448	68 MeV cyclotron – eyes only
TRIUMF	Canada	π^{-}	1979	367	phase III trials using pions – stopped in 1994
TRIUMF	Canada	р	1995	89	74 MeV (500 MeV) cyclotron – eyes only
Europe					
PSI (72 MeV)	Switzerland	р	1984	3712	72 MeV cyclotron – eyes only
PSI (200 MeV)	Switzerland	p p	1996	99	200 MeV (580 MeV) cycl. – gantry with scanning
Clatterbridge	England	p	1989	1287	65 MeV cyclotron – eyes only
Nice	France	p	1991	1951	65 MeV cyclotron
GSI, Darmstadt	Germany	ion	1997	172	synchrotron – carbon beams + gantry
Berlin	Germany	р	1998	437	72 MeV cyclotron – eyes only
Japan					
HIMAC, Chiba	Japan	ion	1994	1601	synchrotron - heavy ions
PMRC(1), Tsukuba	Japan	р	1983	700	synchrotron – protons
PMRC(2), Tsukuba	Japan	p	2001	327	270 MeV synch +gantries
NCC, Kashiwa	Japan	p	1998	230	235 MeV cyclotron + gantries
NOT A	COMPLETE LI	I ST	Total Patier	nts Worldwide 4150	1 (36111 protons)

Conditions treated with protons at Loma Linda

Brain and spinal cord	Isolated brain metastases		
-	Pituitary adenomas		
	Arteriovenous malformations (AVMs)		
Base of skull	<u>Meningiomas</u>		
	Acoustic neuromas		
	Chordomas and chondrosarcomas		
Eye	Uveal melanomas		
Head and neck	<u>Nasopharynx</u>		
	Oropharynx (locally advanced)		
Chest and abdomen	Medically inoperable non-small-cell lung cancer		
	Chordomas and chondrosarcomas		
Pelvis	Prostate		
	Chordomas and chondrosarcomas		
Tumors in children	Brain		
	Orbital and ocular tumors		
	Sarcomas of the base of skull and spine		

Protons best for well-defined tumours located near sensitive/important structures or organs

Beam Delivery – Gantry with Spot Scan

PROSCAN @ PSI

Dose delivered by scanning beam at different energies

Hitachi - Japan

Hospital Based Proton Therapy Facility

- 1. Proton accelerator (synchrotron or cyclotron) capable of 250 MeV
- 2. Beam delivery system with gantries
- 3. Patient positioning equipment
- 4. Very sophisticated control system
- 5. Treatment planning and imaging devices (CT, MRI, ultrasound etc)
- 6. Building
- 7. Cost \$100 million